File size: 15,836 Bytes
4b8596d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# 🤖 Implementações Necessárias no Backend para Chat e Mobile
## 1. 💬 Endpoint de Chat Conversacional
### Novo Endpoint: `/api/v1/chat`
```python
# src/api/routes/chat.py
from fastapi import APIRouter, Depends, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from typing import Optional, Dict, Any
import asyncio
import json
router = APIRouter(prefix="/api/v1/chat", tags=["chat"])
class ChatMessage(BaseModel):
message: str
context: Optional[Dict[str, Any]] = None
session_id: Optional[str] = None
class ChatResponse(BaseModel):
agent_id: str
agent_name: str
message: str
metadata: Dict[str, Any]
suggested_actions: Optional[List[str]] = None
requires_input: Optional[Dict[str, str]] = None
@router.post("/message")
async def chat_message(
request: ChatMessage,
current_user: User = Depends(get_current_user)
) -> ChatResponse:
"""
Processa mensagem do chat e retorna resposta do agente apropriado
"""
# Detectar intenção
intent = await detect_intent(request.message)
# Selecionar agente baseado na intenção
agent = await select_agent_for_intent(intent)
# Manter contexto da sessão
session = await get_or_create_session(request.session_id)
# Processar com o agente
response = await agent.process_chat(
message=request.message,
context={
**request.context,
"session": session,
"intent": intent
}
)
# Salvar no histórico
await save_chat_history(session.id, request, response)
return ChatResponse(
agent_id=agent.agent_id,
agent_name=agent.name,
message=response.content,
metadata={
"confidence": response.confidence,
"processing_time": response.processing_time
},
suggested_actions=response.suggested_actions,
requires_input=response.requires_input
)
@router.post("/stream")
async def chat_stream(request: ChatMessage):
"""
Streaming de respostas para experiência mais fluida
"""
async def generate():
# Header do SSE
yield f"data: {json.dumps({'type': 'start', 'agent': 'detecting'})}\n\n"
# Detectar intenção
intent = await detect_intent(request.message)
yield f"data: {json.dumps({'type': 'intent', 'intent': intent.type})}\n\n"
# Selecionar agente
agent = await select_agent_for_intent(intent)
yield f"data: {json.dumps({'type': 'agent', 'agent_id': agent.agent_id, 'agent_name': agent.name})}\n\n"
# Processar em chunks
async for chunk in agent.process_chat_stream(request.message):
yield f"data: {json.dumps({'type': 'message', 'content': chunk})}\n\n"
await asyncio.sleep(0.1) # Simula digitação
# Finalizar
yield f"data: {json.dumps({'type': 'complete'})}\n\n"
return StreamingResponse(
generate(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no"
}
)
```
## 2. 🧠 Sistema de Detecção de Intenção
```python
# src/services/intent_detection.py
from enum import Enum
from dataclasses import dataclass
from typing import Optional, List
import re
class IntentType(Enum):
INVESTIGATE = "investigate"
ANALYZE = "analyze"
REPORT = "report"
QUESTION = "question"
HELP = "help"
GREETING = "greeting"
@dataclass
class Intent:
type: IntentType
entities: Dict[str, Any]
confidence: float
suggested_agent: str
class IntentDetector:
"""Detecta intenção do usuário para roteamento correto"""
def __init__(self):
self.patterns = {
IntentType.INVESTIGATE: [
r"investigar?\s+(\w+)",
r"analis[ae]r?\s+contratos",
r"verificar?\s+gastos",
r"procurar?\s+irregularidades"
],
IntentType.ANALYZE: [
r"anomalias?\s+em",
r"padr[õo]es?\s+suspeitos",
r"gastos?\s+excessivos",
r"fornecedores?\s+concentrados"
],
IntentType.REPORT: [
r"gerar?\s+relat[óo]rio",
r"documento\s+sobre",
r"resumo\s+de",
r"exportar?\s+dados"
]
}
async def detect(self, message: str) -> Intent:
message_lower = message.lower()
# Detectar órgãos mencionados
organs = self._extract_organs(message_lower)
# Detectar período
period = self._extract_period(message_lower)
# Detectar tipo de intenção
for intent_type, patterns in self.patterns.items():
for pattern in patterns:
if re.search(pattern, message_lower):
return Intent(
type=intent_type,
entities={
"organs": organs,
"period": period,
"original_message": message
},
confidence=0.85,
suggested_agent=self._get_agent_for_intent(intent_type)
)
# Fallback
return Intent(
type=IntentType.HELP,
entities={"original_message": message},
confidence=0.5,
suggested_agent="abaporu"
)
def _extract_organs(self, text: str) -> List[str]:
"""Extrai menções a órgãos governamentais"""
organ_map = {
"saúde": "26000",
"educação": "25000",
"presidência": "20000",
"justiça": "30000",
"agricultura": "22000"
}
found = []
for name, code in organ_map.items():
if name in text:
found.append({"name": name, "code": code})
return found
def _get_agent_for_intent(self, intent_type: IntentType) -> str:
"""Retorna o agente mais apropriado para a intenção"""
mapping = {
IntentType.INVESTIGATE: "zumbi",
IntentType.ANALYZE: "anita",
IntentType.REPORT: "tiradentes",
IntentType.QUESTION: "machado",
IntentType.HELP: "abaporu",
IntentType.GREETING: "abaporu"
}
return mapping.get(intent_type, "abaporu")
```
## 3. 📱 Otimizações para Mobile
### Compressão e Paginação
```python
# src/api/middleware/mobile_optimization.py
from fastapi import Request, Response
from starlette.middleware.base import BaseHTTPMiddleware
import gzip
import json
class MobileOptimizationMiddleware(BaseHTTPMiddleware):
"""Otimizações específicas para mobile"""
async def dispatch(self, request: Request, call_next):
# Detectar cliente mobile
user_agent = request.headers.get("user-agent", "").lower()
is_mobile = any(x in user_agent for x in ["mobile", "android", "iphone"])
# Adicionar header para indicar mobile
request.state.is_mobile = is_mobile
response = await call_next(request)
# Compressão para mobile
if is_mobile and response.headers.get("content-type", "").startswith("application/json"):
body = b""
async for chunk in response.body_iterator:
body += chunk
# Comprimir resposta
compressed = gzip.compress(body)
# Se vale a pena comprimir
if len(compressed) < len(body) * 0.9:
response.headers["content-encoding"] = "gzip"
response.headers["vary"] = "Accept-Encoding"
return Response(
content=compressed,
status_code=response.status_code,
headers=dict(response.headers),
media_type=response.media_type
)
return response
```
### Paginação Otimizada
```python
# src/api/utils/pagination.py
from typing import Optional, List, Any
from pydantic import BaseModel
class MobilePagination(BaseModel):
"""Paginação otimizada para scroll infinito mobile"""
items: List[Any]
next_cursor: Optional[str] = None
has_more: bool = False
total_count: Optional[int] = None
async def paginate_for_mobile(
query,
cursor: Optional[str] = None,
limit: int = 20
) -> MobilePagination:
"""
Paginação baseada em cursor para performance mobile
"""
# Decodificar cursor
offset = 0
if cursor:
offset = int(cursor)
# Buscar items + 1 para saber se há mais
items = await query.offset(offset).limit(limit + 1).all()
has_more = len(items) > limit
if has_more:
items = items[:-1]
next_cursor = str(offset + limit) if has_more else None
return MobilePagination(
items=items,
next_cursor=next_cursor,
has_more=has_more
)
```
## 4. 💾 Cache para Modo Offline
```python
# src/api/utils/offline_cache.py
from datetime import datetime, timedelta
import hashlib
import json
class OfflineCache:
"""Cache agressivo para suporte offline"""
def __init__(self):
self.cache_durations = {
"investigations": timedelta(hours=24),
"reports": timedelta(days=7),
"static_data": timedelta(days=30),
"chat_history": timedelta(days=1)
}
async def cache_for_offline(self, key: str, data: Any, category: str):
"""Salva dados para acesso offline"""
cache_key = self._generate_cache_key(key, category)
cache_data = {
"data": data,
"timestamp": datetime.now().isoformat(),
"category": category,
"expires_at": (
datetime.now() + self.cache_durations.get(category, timedelta(hours=1))
).isoformat()
}
# Salvar no Redis com TTL apropriado
await redis_client.setex(
cache_key,
self.cache_durations.get(category, timedelta(hours=1)),
json.dumps(cache_data)
)
# Headers para cache do navegador
return {
"Cache-Control": f"max-age={self.cache_durations.get(category).total_seconds()}",
"ETag": hashlib.md5(json.dumps(data).encode()).hexdigest(),
"X-Cache-Category": category
}
```
## 5. 🔄 WebSocket para Chat em Tempo Real
```python
# src/api/websocket/chat_ws.py
from fastapi import WebSocket, WebSocketDisconnect
from typing import Dict
import json
class ConnectionManager:
def __init__(self):
self.active_connections: Dict[str, WebSocket] = {}
async def connect(self, websocket: WebSocket, session_id: str):
await websocket.accept()
self.active_connections[session_id] = websocket
def disconnect(self, session_id: str):
self.active_connections.pop(session_id, None)
async def send_message(self, session_id: str, message: dict):
websocket = self.active_connections.get(session_id)
if websocket:
await websocket.send_json(message)
manager = ConnectionManager()
@router.websocket("/ws/chat/{session_id}")
async def websocket_chat(websocket: WebSocket, session_id: str):
await manager.connect(websocket, session_id)
try:
while True:
# Receber mensagem
data = await websocket.receive_json()
# Processar com agente
response = await process_chat_message(data)
# Enviar resposta em chunks para simular digitação
for chunk in response.split_into_chunks():
await manager.send_message(session_id, {
"type": "chunk",
"content": chunk,
"agent": response.agent_id
})
await asyncio.sleep(0.05)
# Mensagem completa
await manager.send_message(session_id, {
"type": "complete",
"suggested_actions": response.suggested_actions
})
except WebSocketDisconnect:
manager.disconnect(session_id)
```
## 6. 🎯 Endpoints Otimizados para Mobile
```python
# src/api/routes/mobile.py
@router.get("/mobile/quick-stats")
async def get_quick_stats(
current_user: User = Depends(get_optional_user)
) -> Dict[str, Any]:
"""Estatísticas rápidas para home do app"""
# Cache agressivo para mobile
cached = await cache.get("mobile_quick_stats")
if cached:
return cached
stats = {
"total_investigations": await get_total_investigations(),
"anomalies_found": await get_total_anomalies(),
"money_at_risk": await get_money_at_risk(),
"trending_organs": await get_trending_organs(limit=5),
"recent_alerts": await get_recent_alerts(limit=3),
"is_demo_mode": current_user is None
}
await cache.set("mobile_quick_stats", stats, ttl=300) # 5 min
return stats
@router.get("/mobile/investigation-summary/{id}")
async def get_investigation_summary_mobile(
id: str,
current_user: User = Depends(get_current_user)
) -> Dict[str, Any]:
"""Resumo otimizado para mobile com dados essenciais"""
investigation = await get_investigation(id)
# Retornar apenas dados essenciais para mobile
return {
"id": investigation.id,
"status": investigation.status,
"progress": investigation.progress,
"risk_level": investigation.risk_level,
"key_findings": investigation.get_top_findings(3),
"quick_stats": {
"anomalies": investigation.anomaly_count,
"contracts": investigation.contract_count,
"value_at_risk": investigation.value_at_risk
},
"last_update": investigation.updated_at
}
```
## 7. 🔔 Push Notifications Ready
```python
# src/services/notifications.py
class NotificationService:
"""Preparado para push notifications mobile"""
async def notify_investigation_complete(
self,
user_id: str,
investigation_id: str,
summary: Dict[str, Any]
):
"""Notifica quando investigação completa"""
notification = {
"title": "Investigação Concluída! 🔍",
"body": f"Encontramos {summary['anomalies']} anomalias",
"data": {
"type": "investigation_complete",
"investigation_id": investigation_id,
"risk_level": summary['risk_level']
},
"icon": "/icons/icon-192x192.png",
"badge": "/icons/badge-72x72.png"
}
# Enviar via FCM/WebPush quando configurado
await self.send_push_notification(user_id, notification)
```
## 📋 Checklist de Implementação
- [ ] Endpoint `/api/v1/chat/message` para chat
- [ ] Endpoint `/api/v1/chat/stream` para SSE
- [ ] WebSocket `/ws/chat/{session_id}`
- [ ] Sistema de detecção de intenção
- [ ] Contexto de sessão para chat
- [ ] Compressão automática para mobile
- [ ] Paginação baseada em cursor
- [ ] Cache agressivo para offline
- [ ] Endpoints otimizados `/mobile/*`
- [ ] Headers CORS para Capacitor
- [ ] Rate limiting diferenciado mobile
---
Com essas implementações, o backend estará totalmente preparado para suportar o chatbot conversacional e a experiência mobile/PWA! 🚀 |