File size: 9,832 Bytes
9730fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# 🚀 Guia de Otimização Maritaca AI - Cidadão.AI

## Resumo das Melhorias

### 1. Novo Endpoint Otimizado
- **URL**: `/api/v1/chat/optimized`
- **Modelo**: Sabiazinho-3 (mais econômico)
- **Persona**: Carlos Drummond de Andrade
- **Economia**: ~40-50% menor custo por requisição

### 2. Comparação de Modelos

| Modelo | Custo | Qualidade | Tempo Resposta | Uso Recomendado |
|--------|-------|-----------|----------------|-----------------|
| Sabiazinho-3 | 💰 | ⭐⭐⭐⭐ | 1-5s | Conversas gerais, saudações |
| Sabiá-3 | 💰💰💰 | ⭐⭐⭐⭐⭐ | 3-15s | Análises complexas |

### 3. Endpoints Disponíveis

```bash
# 1. Simple (Sabiá-3) - FUNCIONANDO 100%
POST /api/v1/chat/simple

# 2. Stable (Multi-fallback) - NOVO
POST /api/v1/chat/stable

# 3. Optimized (Sabiazinho-3 + Drummond) - NOVO
POST /api/v1/chat/optimized
```

## Integração Frontend - Versão Otimizada

### Serviço de Chat Atualizado

```typescript
// services/chatService.ts
export interface ChatEndpoint {
  url: string;
  name: string;
  priority: number;
  model: string;
}

export class ChatService {
  private readonly API_URL = process.env.NEXT_PUBLIC_API_URL
  
  private endpoints: ChatEndpoint[] = [
    {
      url: '/api/v1/chat/optimized',
      name: 'Optimized (Sabiazinho)',
      priority: 1,
      model: 'sabiazinho-3'
    },
    {
      url: '/api/v1/chat/simple',
      name: 'Simple (Sabiá-3)',
      priority: 2,
      model: 'sabia-3'
    },
    {
      url: '/api/v1/chat/stable',
      name: 'Stable (Fallback)',
      priority: 3,
      model: 'mixed'
    }
  ]
  
  async sendMessage(
    message: string, 
    options?: {
      preferredModel?: 'economic' | 'quality';
      useDrummond?: boolean;
    }
  ): Promise<ChatResponse> {
    const sessionId = `session_${Date.now()}`
    
    // Select endpoint based on preference
    let selectedEndpoints = [...this.endpoints]
    
    if (options?.preferredModel === 'economic') {
      // Prioritize Sabiazinho
      selectedEndpoints.sort((a, b) => 
        a.model === 'sabiazinho-3' ? -1 : 1
      )
    } else if (options?.preferredModel === 'quality') {
      // Prioritize Sabiá-3
      selectedEndpoints.sort((a, b) => 
        a.model === 'sabia-3' ? -1 : 1
      )
    }
    
    // Try endpoints in order
    for (const endpoint of selectedEndpoints) {
      try {
        const body: any = { message, session_id: sessionId }
        
        // Add Drummond flag for optimized endpoint
        if (endpoint.url.includes('optimized')) {
          body.use_drummond = options?.useDrummond ?? true
        }
        
        const response = await fetch(`${this.API_URL}${endpoint.url}`, {
          method: 'POST',
          headers: { 'Content-Type': 'application/json' },
          body: JSON.stringify(body)
        })
        
        if (response.ok) {
          const data = await response.json()
          console.log(`✅ Success with ${endpoint.name}`)
          return data
        }
      } catch (error) {
        console.warn(`Failed ${endpoint.name}:`, error)
      }
    }
    
    // Ultimate fallback
    return {
      message: 'Desculpe, estou temporariamente indisponível.',
      session_id: sessionId,
      agent_name: 'Sistema',
      agent_id: 'system',
      confidence: 0,
      metadata: { fallback: true }
    }
  }
  
  // Analyze message to decide best model
  analyzeComplexity(message: string): 'simple' | 'complex' {
    const complexKeywords = [
      'analise', 'investigue', 'compare', 'tendência',
      'padrão', 'anomalia', 'detalhe', 'relatório'
    ]
    
    const hasComplexKeyword = complexKeywords.some(
      keyword => message.toLowerCase().includes(keyword)
    )
    
    return hasComplexKeyword || message.length > 100 
      ? 'complex' 
      : 'simple'
  }
}
```

### Componente Inteligente

```tsx
// components/SmartChat.tsx
export function SmartChat() {
  const [messages, setMessages] = useState<Message[]>([])
  const [modelPreference, setModelPreference] = useState<'auto' | 'economic' | 'quality'>('auto')
  const chatService = new ChatService()
  
  const handleSendMessage = async (text: string) => {
    // Add user message
    const userMessage = createUserMessage(text)
    setMessages(prev => [...prev, userMessage])
    
    // Analyze complexity for auto mode
    let preference: 'economic' | 'quality' | undefined
    
    if (modelPreference === 'auto') {
      const complexity = chatService.analyzeComplexity(text)
      preference = complexity === 'simple' ? 'economic' : 'quality'
    } else if (modelPreference !== 'auto') {
      preference = modelPreference
    }
    
    // Send with appropriate model
    const response = await chatService.sendMessage(text, {
      preferredModel: preference,
      useDrummond: true // Enable cultural persona
    })
    
    // Add response
    const assistantMessage = {
      ...createAssistantMessage(response),
      metadata: {
        ...response.metadata,
        model_preference: preference,
        actual_model: response.model_used
      }
    }
    
    setMessages(prev => [...prev, assistantMessage])
    
    // Log for monitoring
    logChatMetrics({
      model_used: response.model_used,
      response_time: response.metadata?.response_time_ms,
      tokens: response.metadata?.tokens_used,
      success: true
    })
  }
  
  return (
    <div className="smart-chat">
      {/* Model preference selector */}
      <div className="model-selector">
        <label>Modo:</label>
        <select 
          value={modelPreference} 
          onChange={(e) => setModelPreference(e.target.value as any)}
        >
          <option value="auto">Automático</option>
          <option value="economic">Econômico (Sabiazinho)</option>
          <option value="quality">Qualidade (Sabiá-3)</option>
        </select>
      </div>
      
      {/* Chat messages */}
      <MessageList messages={messages} />
      
      {/* Input */}
      <ChatInput onSend={handleSendMessage} />
      
      {/* Status indicator */}
      <ChatStatus 
        lastModel={messages[messages.length - 1]?.metadata?.actual_model}
        preference={modelPreference}
      />
    </div>
  )
}
```

## Otimizações de Custo

### 1. Cache Inteligente
```typescript
class CachedChatService extends ChatService {
  private cache = new Map<string, CachedResponse>()
  
  async sendMessage(message: string, options?: any) {
    // Check cache for common questions
    const cacheKey = this.normalizeMessage(message)
    const cached = this.cache.get(cacheKey)
    
    if (cached && !this.isExpired(cached)) {
      return {
        ...cached.response,
        metadata: {
          ...cached.response.metadata,
          from_cache: true
        }
      }
    }
    
    // Get fresh response
    const response = await super.sendMessage(message, options)
    
    // Cache if successful
    if (response.confidence > 0.8) {
      this.cache.set(cacheKey, {
        response,
        timestamp: Date.now()
      })
    }
    
    return response
  }
}
```

### 2. Batching de Requisições
```typescript
class BatchedChatService extends ChatService {
  private queue: QueuedMessage[] = []
  private timer: NodeJS.Timeout | null = null
  
  async sendMessage(message: string, options?: any) {
    return new Promise((resolve) => {
      this.queue.push({ message, options, resolve })
      
      if (!this.timer) {
        this.timer = setTimeout(() => this.processBatch(), 100)
      }
    })
  }
  
  private async processBatch() {
    const batch = this.queue.splice(0, 5) // Max 5 per batch
    
    // Send all at once (if API supports)
    const responses = await this.sendBatch(batch)
    
    // Resolve individual promises
    batch.forEach((item, index) => {
      item.resolve(responses[index])
    })
    
    this.timer = null
  }
}
```

## Métricas e Monitoramento

```typescript
// utils/chatMetrics.ts
export class ChatMetricsCollector {
  private metrics = {
    totalRequests: 0,
    modelUsage: new Map<string, number>(),
    avgResponseTime: 0,
    totalTokens: 0,
    errorRate: 0,
    cacheHitRate: 0
  }
  
  recordMetric(data: ChatMetric) {
    this.metrics.totalRequests++
    
    // Track model usage
    const model = data.model_used || 'unknown'
    this.metrics.modelUsage.set(
      model,
      (this.metrics.modelUsage.get(model) || 0) + 1
    )
    
    // Update averages
    this.updateAverages(data)
    
    // Send to analytics (optional)
    if (window.gtag) {
      window.gtag('event', 'chat_interaction', {
        model_used: model,
        response_time: data.response_time,
        success: !data.error
      })
    }
  }
  
  getCostEstimate(): number {
    const sabiazinhoCost = 0.001 // per request
    const sabia3Cost = 0.003 // per request
    
    const sabiazinhoCount = this.metrics.modelUsage.get('sabiazinho-3') || 0
    const sabia3Count = this.metrics.modelUsage.get('sabia-3') || 0
    
    return (sabiazinhoCount * sabiazinhoCost) + (sabia3Count * sabia3Cost)
  }
  
  getReport() {
    return {
      ...this.metrics,
      estimatedCost: this.getCostEstimate(),
      modelDistribution: Object.fromEntries(this.metrics.modelUsage)
    }
  }
}
```

## Recomendações de Uso

### Para o Frontend:
1. **Perguntas Simples/Saudações**: Use Sabiazinho (economic mode)
2. **Análises Complexas**: Use Sabiá-3 (quality mode)
3. **Auto Mode**: Deixa o sistema decidir baseado na complexidade

### Economia Estimada:
- Conversas simples: 40-50% economia usando Sabiazinho
- Mix típico (70% simples, 30% complexo): ~35% economia total
- Com cache: Adicional 10-20% economia

### Próximos Passos:
1. Implementar cache para perguntas frequentes
2. Adicionar análise de sentimento para ajustar tom
3. Criar dashboards de custo em tempo real
4. A/B testing entre modelos