File size: 10,814 Bytes
e91e60f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# π Monitoring & Observability Guide
**Author**: Anderson Henrique da Silva
**Last Updated**: 2025-09-20 07:28:07 -03 (SΓ£o Paulo, Brazil)
## Overview
CidadΓ£o.AI implements a comprehensive observability stack providing real-time insights into system health, performance, and business metrics.
## π― Observability Pillars
### 1. Metrics (Prometheus)
- System performance indicators
- Business KPIs
- Custom application metrics
### 2. Logs (Structured JSON)
- Centralized logging
- Correlation IDs
- Contextual information
### 3. Traces (OpenTelemetry)
- Distributed request tracking
- Service dependency mapping
- Performance bottleneck identification
## ποΈ Architecture
```
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β Application ββββββΆβ Prometheus ββββββΆβ Grafana β
β β β β β β
β - Metrics β β - Storage β β - Dashboards β
β - Health β β - Alerting β β - Alerts β
β - SLO/SLA β β - Rules β β - Reports β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
```
## π Metrics Implementation
### Business Metrics
**Location**: `src/infrastructure/observability/metrics.py`
```python
# Agent task execution
agent_tasks_total = Counter(
'cidadao_ai_agent_tasks_total',
'Total agent tasks executed',
['agent_name', 'task_type', 'status']
)
# Investigation lifecycle
investigations_total = Counter(
'cidadao_ai_investigations_total',
'Total investigations',
['status', 'investigation_type']
)
# Anomaly detection
anomalies_detected_total = Counter(
'cidadao_ai_anomalies_detected_total',
'Total anomalies detected',
['anomaly_type', 'severity', 'agent']
)
```
### System Metrics
```python
# API performance
@observe_request(
histogram=request_duration_histogram,
counter=request_count_counter
)
async def api_endpoint():
# Automatic metric collection
```
### Metric Endpoints
- `/health/metrics` - Prometheus format
- `/health/metrics/json` - JSON format
- `/api/v1/observability/metrics/custom` - Custom metrics
## π Health Monitoring
### Dependency Health Checks
**Location**: `src/infrastructure/health/dependency_checker.py`
**Monitored Dependencies**:
1. **Database** - Connection pool, query performance
2. **Redis** - Cache availability, latency
3. **External APIs** - Portal da TransparΓͺncia, LLM services
4. **File System** - Disk space, write permissions
**Health Check Features**:
- Parallel execution
- Configurable timeouts
- Retry logic
- Trend analysis
- Degradation detection
### Health Endpoints
```bash
GET /health # Basic health (for load balancers)
GET /health/detailed # Comprehensive health report
GET /health/dependencies/{name} # Specific dependency health
POST /health/check # Trigger manual health check
```
## π SLA/SLO Monitoring
### SLO Configuration
**Location**: `src/infrastructure/monitoring/slo_monitor.py`
**Default SLOs**:
```python
# API Availability
- Target: 99.9% uptime
- Time Window: 24 hours
- Warning: 98%
- Critical: 95%
# API Response Time
- Target: P95 < 2 seconds
- Time Window: 1 hour
- Warning: 90% compliance
- Critical: 80% compliance
# Investigation Success Rate
- Target: 95% success
- Time Window: 4 hours
- Warning: 92%
- Critical: 88%
# Agent Error Rate
- Target: < 1% errors
- Time Window: 1 hour
- Warning: 0.8%
- Critical: 1.5%
```
### Error Budget Tracking
```python
# Automatic error budget calculation
error_budget_remaining = 100 - ((100 - current_compliance) / (100 - target))
# Alerts on budget consumption
if error_budget_consumed > 80%:
alert("High error budget consumption")
```
### SLO Endpoints
```bash
GET /api/v1/monitoring/slo # All SLO status
GET /api/v1/monitoring/slo/{name} # Specific SLO
POST /api/v1/monitoring/slo # Create SLO
GET /api/v1/monitoring/error-budget # Error budget report
GET /api/v1/monitoring/alerts/violations # SLO violations
```
## π Structured Logging
### Implementation
**Location**: `src/infrastructure/observability/structured_logging.py`
**Log Format**:
```json
{
"timestamp": "2025-09-20T10:28:07.123Z",
"level": "INFO",
"correlation_id": "uuid-1234-5678",
"service": "cidadao-ai",
"component": "agent.zumbi",
"message": "Anomaly detected",
"context": {
"investigation_id": "inv-123",
"anomaly_type": "price_spike",
"confidence": 0.95
}
}
```
**Features**:
- JSON structured format
- Correlation ID propagation
- Contextual enrichment
- Performance metrics inclusion
- Sensitive data masking
## π Distributed Tracing
### OpenTelemetry Integration
**Location**: `src/infrastructure/observability/tracing.py`
**Trace Context**:
```python
@trace_operation("investigation.analyze")
async def analyze_contracts(contracts):
with tracer.start_span("data_validation"):
# Automatic span creation
```
**Trace Propagation**:
- B3 headers support
- W3C Trace Context
- Baggage propagation
- Custom attributes
### Trace Visualization
- Jaeger UI integration
- Service dependency graphs
- Latency analysis
- Error tracking
## π¨ Alerting System
### Prometheus Alert Rules
**Location**: `monitoring/prometheus/rules/cidadao-ai-alerts.yml`
**Alert Categories**:
#### 1. System Health
```yaml
- alert: SystemDown
expr: up{job="cidadao-ai-backend"} == 0
for: 30s
severity: critical
- alert: HighErrorRate
expr: error_rate > 5
for: 2m
severity: warning
```
#### 2. Infrastructure
```yaml
- alert: DatabaseConnectionsCritical
expr: db_connections_used / db_connections_total > 0.95
for: 30s
severity: critical
- alert: CacheHitRateLow
expr: cache_hit_rate < 70
for: 5m
severity: warning
```
#### 3. Agent Performance
```yaml
- alert: AgentTaskFailureHigh
expr: agent_error_rate > 10
for: 3m
severity: warning
- alert: AgentQualityScoreLow
expr: agent_quality_score < 0.8
for: 5m
severity: warning
```
#### 4. Business Metrics
```yaml
- alert: InvestigationSuccessRateLow
expr: investigation_success_rate < 90
for: 10m
severity: warning
- alert: AnomalyDetectionAccuracyLow
expr: anomaly_accuracy < 0.85
for: 15m
severity: warning
```
## π Grafana Dashboards
### System Overview Dashboard
**Location**: `monitoring/grafana/dashboards/cidadao-ai-overview.json`
**Panels**:
1. System health status
2. Active investigations count
3. API response time P95
4. Anomalies detected (24h)
5. Request rate graph
6. Agent tasks performance
7. SLO compliance table
8. Error budget consumption
9. Database connection pool
10. Cache hit rate
11. External API health
12. Investigation success rate
13. Top anomaly types
14. Memory/CPU usage
15. Alert status
### Agent Performance Dashboard
**Location**: `monitoring/grafana/dashboards/cidadao-ai-agents.json`
**Panels**:
1. Agent task success rate
2. Active agents count
3. Average task duration
4. Reflection iterations
5. Performance by agent type
6. Task duration percentiles
7. Agent status distribution
8. Top performing agents
9. Error distribution
10. Agent-specific metrics
11. Memory usage by agent
12. Communication matrix
13. Quality score trends
## π§ Monitoring Configuration
### Prometheus Configuration
```yaml
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'cidadao-ai-backend'
static_configs:
- targets: ['localhost:8000']
metrics_path: '/health/metrics'
```
### Grafana Data Sources
```json
{
"name": "Prometheus",
"type": "prometheus",
"url": "http://prometheus:9090",
"access": "proxy"
}
```
## π― Key Performance Indicators
### Technical KPIs
- **Uptime**: Target 99.95%
- **API Latency P99**: < 500ms
- **Error Rate**: < 0.1%
- **Cache Hit Rate**: > 90%
- **Agent Success Rate**: > 95%
### Business KPIs
- **Investigations/Day**: Track growth
- **Anomalies Detected**: Measure effectiveness
- **Report Generation Time**: < 30s
- **User Satisfaction**: Via feedback metrics
## π APM Integration
### Supported Platforms
**Location**: `src/infrastructure/apm/`
1. **New Relic**
```python
apm_integrations.setup_newrelic(
license_key="your-key",
app_name="cidadao-ai"
)
```
2. **Datadog**
```python
apm_integrations.setup_datadog(
api_key="your-api-key",
app_key="your-app-key"
)
```
3. **Elastic APM**
```python
apm_integrations.setup_elastic_apm(
server_url="http://apm-server:8200",
secret_token="your-token"
)
```
### APM Features
- Performance tracking decorators
- Error reporting with context
- Custom business metrics
- Distributed trace correlation
## π§ͺ Chaos Engineering
### Chaos Experiments
**Location**: `src/api/routes/chaos.py`
**Available Experiments**:
1. **Latency Injection**
- Configurable delays
- Probability-based
- Auto-expiration
2. **Error Injection**
- HTTP error codes
- Configurable rate
- Multiple error types
3. **Resource Pressure**
- Memory consumption
- CPU load
- Controlled intensity
### Chaos Endpoints
```bash
POST /api/v1/chaos/inject/latency
POST /api/v1/chaos/inject/errors
POST /api/v1/chaos/experiments/memory-pressure
POST /api/v1/chaos/experiments/cpu-pressure
POST /api/v1/chaos/stop/{experiment}
GET /api/v1/chaos/status
```
## π Best Practices
1. **Set Meaningful SLOs**: Based on user expectations
2. **Monitor Business Metrics**: Not just technical ones
3. **Use Correlation IDs**: For request tracing
4. **Alert on Symptoms**: Not causes
5. **Document Runbooks**: For each alert
6. **Regular Reviews**: Of metrics and thresholds
7. **Capacity Planning**: Based on trends
## π Troubleshooting
### Missing Metrics
1. Check Prometheus scrape configuration
2. Verify metrics endpoint accessibility
3. Review metric registration code
### Alert Fatigue
1. Tune alert thresholds
2. Implement alert grouping
3. Use inhibition rules
### Dashboard Performance
1. Optimize query time ranges
2. Use recording rules
3. Implement caching
## π Additional Resources
- [Prometheus Best Practices](https://prometheus.io/docs/practices/)
- [Grafana Dashboard Guide](https://grafana.com/docs/grafana/latest/dashboards/)
- [OpenTelemetry Documentation](https://opentelemetry.io/docs/)
- [SRE Workbook](https://sre.google/workbook/)
---
For monitoring questions or improvements, contact: Anderson Henrique da Silva |