File size: 6,924 Bytes
e91e60f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# ๐ Performance Optimization Guide
**Author**: Anderson Henrique da Silva
**Last Updated**: 2025-09-20 07:28:07 -03 (Sรฃo Paulo, Brazil)
## Overview
This document details the comprehensive performance optimizations implemented in Cidadรฃo.AI Backend to achieve enterprise-grade performance and scalability.
## ๐ฏ Performance Goals
- **API Latency**: P95 < 200ms, P99 < 500ms
- **Throughput**: > 10,000 requests/second
- **Agent Response Time**: < 2 seconds
- **Cache Hit Rate**: > 90%
- **Database Query Time**: P90 < 100ms
- **Memory Efficiency**: < 2GB per instance
## ๐๏ธ Optimization Layers
### 1. JSON Serialization (3x Faster)
**Implementation**: `src/infrastructure/performance/json_utils.py`
```python
# Before: Standard json library
import json
data = json.dumps(large_object) # ~300ms
# After: orjson
from src.infrastructure.performance.json_utils import fast_json_dumps
data = fast_json_dumps(large_object) # ~100ms
```
**Benefits**:
- 3x faster serialization/deserialization
- Native datetime support
- Automatic numpy/pandas conversion
- Lower memory footprint
### 2. Compression Middleware
**Implementation**: `src/api/middleware/compression.py`
**Features**:
- **Brotli**: Best compression for text (11 quality level)
- **Gzip**: Fallback compression (9 quality level)
- **Smart Detection**: Skip compression for images/videos
- **Size Threshold**: Only compress responses > 1KB
**Results**:
- 70-90% bandwidth reduction
- Faster client downloads
- Reduced infrastructure costs
### 3. Advanced Caching Strategy
**Implementation**: `src/infrastructure/cache/`
#### Cache Hierarchy
```
L1 (Memory) โ L2 (Redis) โ L3 (Database)
โ
โโ TTL: 5 min TTL: 1 hr Persistent
โโ Size: 1000 Size: 10K Unlimited
โโ Speed: <1ms Speed: <5ms Speed: <50ms
```
#### Cache Stampede Protection
- **XFetch Algorithm**: Prevents thundering herd
- **Probabilistic Early Expiration**: Smooth cache refresh
- **Lock-based Refresh**: Single worker updates cache
### 4. Connection Pooling
**Implementation**: `src/infrastructure/http/connection_pool.py`
**LLM Providers**:
```python
# HTTP/2 multiplexing
limits = httpx.Limits(
max_keepalive_connections=20,
max_connections=100,
keepalive_expiry=300.0
)
```
**Benefits**:
- Connection reuse
- Reduced handshake overhead
- Better resource utilization
### 5. Agent Pool Management
**Implementation**: `src/infrastructure/agents/agent_pool.py`
**Features**:
- **Pre-warmed Instances**: Ready agents in pool
- **Lifecycle Management**: Health checks & recycling
- **Dynamic Scaling**: Based on load
- **Memory Optimization**: Shared resources
**Configuration**:
```python
AgentPoolConfig(
min_size=2,
max_size=10,
max_idle_time=300,
health_check_interval=60
)
```
### 6. Parallel Processing
**Implementation**: `src/infrastructure/agents/parallel_processor.py`
**Strategies**:
1. **MapReduce**: Split work across agents
2. **Pipeline**: Sequential processing stages
3. **Scatter-Gather**: Broadcast and collect
4. **Round-Robin**: Load distribution
**Example**:
```python
# Process 100 contracts in parallel
results = await processor.process_parallel(
contracts,
strategy="scatter_gather",
max_workers=5
)
```
### 7. Database Optimizations
**Implementation**: `src/infrastructure/database/`
**Indexes**:
```sql
-- Composite indexes for common queries
CREATE INDEX idx_investigations_composite
ON investigations(status, user_id, created_at DESC);
-- Partial indexes for filtered queries
CREATE INDEX idx_active_investigations
ON investigations(created_at)
WHERE status = 'active';
-- GIN indexes for JSONB
CREATE INDEX idx_metadata_gin
ON contracts USING gin(metadata);
```
**Query Optimization**:
- Query result caching
- Prepared statement reuse
- Connection pooling (20 base + 30 overflow)
- Read replicas for analytics
### 8. GraphQL Performance
**Implementation**: `src/api/routes/graphql.py`
**Features**:
- **Query Depth Limiting**: Max depth 10
- **Query Complexity Analysis**: Max 1000 points
- **DataLoader Pattern**: Batch & cache
- **Field-level Caching**: Granular control
### 9. WebSocket Optimization
**Implementation**: `src/infrastructure/websocket/`
**Batching**:
```python
BatchingConfig(
max_batch_size=50,
batch_timeout_ms=100,
compression_threshold=1024
)
```
**Benefits**:
- Reduced network overhead
- Message compression
- Efficient broadcasting
### 10. Event-Driven Architecture
**Implementation**: `src/infrastructure/events/`
**CQRS Pattern**:
- **Commands**: Write operations (async)
- **Queries**: Read operations (cached)
- **Events**: Redis Streams backbone
**Benefits**:
- Decoupled components
- Better scalability
- Event sourcing capability
## ๐ Performance Metrics
### Before Optimizations
- API P95 Latency: 800ms
- Throughput: 1,200 req/s
- Memory Usage: 3.5GB
- Cache Hit Rate: 45%
### After Optimizations
- API P95 Latency: 180ms (โ77%)
- Throughput: 12,000 req/s (โ900%)
- Memory Usage: 1.8GB (โ48%)
- Cache Hit Rate: 92% (โ104%)
## ๐ง Configuration Tuning
### Environment Variables
```bash
# Performance settings
JSON_ENCODER=orjson
COMPRESSION_LEVEL=11
CACHE_STRATEGY=multi_tier
AGENT_POOL_SIZE=10
DB_POOL_SIZE=50
HTTP2_ENABLED=true
BATCH_SIZE=100
```
### Resource Limits
```yaml
# Kubernetes resources
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "2000m"
```
## ๐ Best Practices
1. **Use Batch Endpoints**: For bulk operations
2. **Enable Compression**: For all API calls
3. **Leverage GraphQL**: For flexible data fetching
4. **Monitor Metrics**: Track performance KPIs
5. **Cache Aggressively**: But invalidate smartly
6. **Profile Regularly**: Identify bottlenecks
7. **Load Test**: Before production changes
## ๐ Monitoring
### Key Metrics to Track
- `cidadao_ai_request_duration_seconds`
- `cidadao_ai_cache_hit_ratio`
- `cidadao_ai_agent_pool_utilization`
- `cidadao_ai_db_query_duration_seconds`
- `cidadao_ai_websocket_message_rate`
### Grafana Dashboards
- System Performance Overview
- Agent Pool Metrics
- Cache Performance
- Database Query Analysis
- API Endpoint Latencies
## ๐ Troubleshooting
### High Latency
1. Check cache hit rates
2. Review slow query logs
3. Monitor agent pool health
4. Verify compression is enabled
### Memory Issues
1. Tune cache sizes
2. Check for memory leaks
3. Review agent pool limits
4. Enable memory profiling
### Throughput Problems
1. Scale agent pool
2. Increase connection limits
3. Enable HTTP/2
4. Use batch operations
## ๐ฏ Future Optimizations
1. **GPU Acceleration**: For ML models
2. **Edge Caching**: CDN integration
3. **Serverless Functions**: For stateless operations
4. **Database Sharding**: For massive scale
5. **Service Mesh**: For microservices architecture
---
For questions or optimization suggestions, contact: Anderson Henrique da Silva |