File size: 6,586 Bytes
dc1e705 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# Maritaca AI Integration Guide
## Overview
This guide covers the integration of Maritaca AI's Sabiá-3 language model with the Cidadão.AI backend, specifically for use with the Drummond agent for conversational AI and natural language generation in Brazilian Portuguese.
## Features
The `MaritacaClient` provides:
- **Async/await support** for all operations
- **Streaming responses** for real-time text generation
- **Automatic retry** with exponential backoff
- **Rate limit handling** with smart retries
- **Circuit breaker pattern** for resilience
- **Comprehensive error handling** and logging
- **Type hints** for better development experience
- **Context manager support** for proper resource cleanup
## Configuration
### Environment Variables
Add the following to your `.env` file:
```env
# Maritaca AI Configuration
MARITACA_API_KEY=your-api-key-here
MARITACA_API_BASE_URL=https://chat.maritaca.ai/api
MARITACA_MODEL=sabia-3
```
### Available Models
- `sabia-3` - Standard Sabiá-3 model
- `sabia-3-medium` - Medium-sized variant
- `sabia-3-large` - Large variant for complex tasks
## Usage Examples
### Basic Chat Completion
```python
from src.services.maritaca_client import create_maritaca_client
async def example():
async with create_maritaca_client(api_key="your-key") as client:
response = await client.chat_completion(
messages=[
{"role": "user", "content": "Olá, como você está?"}
],
temperature=0.7,
max_tokens=100
)
print(response.content)
```
### Streaming Response
```python
async def streaming_example():
async with create_maritaca_client(api_key="your-key") as client:
async for chunk in await client.chat_completion(
messages=[{"role": "user", "content": "Conte uma história"}],
stream=True
):
print(chunk, end="", flush=True)
```
### Integration with LLM Manager
```python
from src.llm.providers import LLMManager, LLMProvider, LLMRequest
# Configure with Maritaca as primary provider
manager = LLMManager(
primary_provider=LLMProvider.MARITACA,
fallback_providers=[LLMProvider.GROQ, LLMProvider.TOGETHER]
)
request = LLMRequest(
messages=[{"role": "user", "content": "Analyze government spending"}],
temperature=0.7,
max_tokens=500
)
response = await manager.complete(request)
```
### Drummond Agent Integration
The Drummond agent can now use Maritaca AI for natural language generation:
```python
from src.agents.drummond import CommunicationAgent, AgentContext
context = AgentContext(
user_id="user123",
session_id="session456",
metadata={
"llm_provider": "maritaca",
"llm_model": "sabia-3"
}
)
drummond = CommunicationAgent()
# Agent will automatically use Maritaca for NLG tasks
```
## API Reference
### MaritacaClient
#### Constructor Parameters
- `api_key` (str): Your Maritaca AI API key
- `base_url` (str): API base URL (default: "https://chat.maritaca.ai/api")
- `model` (str): Default model to use (default: "sabia-3")
- `timeout` (int): Request timeout in seconds (default: 60)
- `max_retries` (int): Maximum retry attempts (default: 3)
- `circuit_breaker_threshold` (int): Failures before circuit opens (default: 5)
- `circuit_breaker_timeout` (int): Circuit reset time in seconds (default: 60)
#### Methods
##### `chat_completion()`
Create a chat completion with Maritaca AI.
**Parameters:**
- `messages`: List of conversation messages
- `model`: Optional model override
- `temperature`: Sampling temperature (0.0-2.0)
- `max_tokens`: Maximum tokens to generate
- `top_p`: Top-p sampling parameter
- `frequency_penalty`: Frequency penalty (-2.0 to 2.0)
- `presence_penalty`: Presence penalty (-2.0 to 2.0)
- `stop`: List of stop sequences
- `stream`: Enable streaming response
**Returns:**
- `MaritacaResponse` for non-streaming
- `AsyncGenerator[str, None]` for streaming
##### `health_check()`
Check Maritaca AI service health.
**Returns:**
- Dictionary with status information
## Error Handling
The client handles various error scenarios:
```python
from src.core.exceptions import LLMError, LLMRateLimitError
try:
response = await client.chat_completion(messages)
except LLMRateLimitError as e:
# Handle rate limiting
retry_after = e.details.get("retry_after", 60)
await asyncio.sleep(retry_after)
except LLMError as e:
# Handle other API errors
logger.error(f"Maritaca error: {e}")
```
## Circuit Breaker
The circuit breaker protects against cascading failures:
1. **Closed State**: Normal operation
2. **Open State**: After threshold failures, requests fail immediately
3. **Reset**: After timeout, circuit closes and requests resume
## Performance Considerations
- **Connection Pooling**: Client maintains up to 20 connections
- **Keep-alive**: Connections stay alive for 30 seconds
- **Streaming**: Use for long responses to improve perceived latency
- **Retry Strategy**: Exponential backoff prevents overwhelming the API
## Testing
Run the test suite:
```bash
# Unit tests
pytest tests/unit/test_maritaca_client.py -v
# Integration example
python examples/maritaca_drummond_integration.py
```
## Best Practices
1. **Always use context managers** to ensure proper cleanup
2. **Set appropriate timeouts** based on expected response times
3. **Use streaming** for long-form content generation
4. **Monitor circuit breaker status** in production
5. **Implement proper error handling** for all API calls
6. **Cache responses** when appropriate to reduce API calls
## Troubleshooting
### Common Issues
1. **Circuit Breaker Open**
- Check API status
- Review recent error logs
- Wait for circuit reset timeout
2. **Rate Limiting**
- Implement request queuing
- Use retry-after header
- Consider upgrading API plan
3. **Timeout Errors**
- Increase timeout for complex requests
- Use streaming for long responses
- Check network connectivity
### Debug Logging
Enable debug logs:
```python
import logging
logging.getLogger("src.services.maritaca_client").setLevel(logging.DEBUG)
```
## Security Notes
- **Never commit API keys** to version control
- **Use environment variables** for sensitive data
- **Rotate keys regularly** in production
- **Monitor API usage** for anomalies
## Support
For Maritaca AI specific issues:
- Documentation: https://docs.maritaca.ai
- Support: [email protected]
For Cidadão.AI integration issues:
- Create an issue in the project repository
- Check the logs for detailed error information |