File size: 24,158 Bytes
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89ac19
 
 
 
 
 
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89ac19
824bf31
 
 
f89ac19
 
 
 
 
 
 
 
824bf31
f89ac19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89ac19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
"""
Module: agents.abaporu
Codinome: Abaporu - Núcleo Central da IA
Description: Master agent that orchestrates other agents with self-reflection
Author: Anderson H. Silva
Date: 2025-01-24
License: Proprietary - All rights reserved
"""

import asyncio
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple

from pydantic import BaseModel, Field as PydanticField

from src.core import AgentStatus, ReflectionType, get_logger
from src.core.exceptions import AgentExecutionError, InvestigationError
from .deodoro import (
    AgentContext,
    AgentMessage,
    AgentResponse,
    ReflectiveAgent,
)
from .parallel_processor import (
    ParallelAgentProcessor,
    ParallelTask,
    ParallelStrategy,
    parallel_processor,
)


class InvestigationPlan(BaseModel):
    """Plan for conducting an investigation."""
    
    objective: str = PydanticField(..., description="Investigation objective")
    steps: List[Dict[str, Any]] = PydanticField(..., description="Investigation steps")
    required_agents: List[str] = PydanticField(..., description="Required agents")
    estimated_time: int = PydanticField(..., description="Estimated time in seconds")
    quality_criteria: Dict[str, Any] = PydanticField(..., description="Quality criteria")
    fallback_strategies: List[str] = PydanticField(default_factory=list, description="Fallback strategies")


class InvestigationResult(BaseModel):
    """Result of an investigation."""
    
    investigation_id: str = PydanticField(..., description="Investigation ID")
    query: str = PydanticField(..., description="Original query")
    findings: List[Dict[str, Any]] = PydanticField(..., description="Investigation findings")
    confidence_score: float = PydanticField(..., description="Confidence in results")
    sources: List[str] = PydanticField(..., description="Data sources used")
    explanation: Optional[str] = PydanticField(default=None, description="Explanation of findings")
    metadata: Dict[str, Any] = PydanticField(default_factory=dict, description="Additional metadata")
    timestamp: datetime = PydanticField(default_factory=datetime.utcnow)
    processing_time_ms: Optional[float] = PydanticField(default=None, description="Processing time")


class MasterAgent(ReflectiveAgent):
    """
    Master agent that orchestrates investigations using other agents.
    
    This agent has self-reflection capabilities and can:
    - Plan investigation strategies
    - Coordinate with other agents
    - Monitor progress and quality
    - Adapt strategies based on results
    - Provide comprehensive explanations
    """
    
    def __init__(
        self,
        llm_service: Any,
        memory_agent: Any,
        reflection_threshold: float = 0.8,
        max_reflection_loops: int = 3,
        **kwargs: Any
    ) -> None:
        """
        Initialize master agent.
        
        Args:
            llm_service: LLM service instance
            memory_agent: Memory agent instance
            reflection_threshold: Minimum quality threshold
            max_reflection_loops: Maximum reflection iterations
            **kwargs: Additional arguments
        """
        super().__init__(
            name="MasterAgent",
            description="Orchestrates investigations with self-reflection capabilities",
            capabilities=[
                "plan_investigation",
                "coordinate_agents",
                "monitor_progress",
                "reflect_on_results",
                "generate_explanations",
                "adapt_strategies",
            ],
            reflection_threshold=reflection_threshold,
            max_reflection_loops=max_reflection_loops,
            **kwargs
        )
        
        self.llm_service = llm_service
        self.memory_agent = memory_agent
        self.active_investigations: Dict[str, InvestigationPlan] = {}
        self.agent_registry: Dict[str, Any] = {}
        
        self.logger.info(
            "abaporu_initialized",
            reflection_threshold=reflection_threshold,
            max_reflection_loops=max_reflection_loops,
        )
    
    async def initialize(self) -> None:
        """Initialize master agent."""
        self.logger.info("abaporu_initializing")
        
        # Initialize sub-services
        if hasattr(self.llm_service, 'initialize'):
            await self.llm_service.initialize()
        
        if hasattr(self.memory_agent, 'initialize'):
            await self.memory_agent.initialize()
        
        self.status = AgentStatus.IDLE
        self.logger.info("abaporu_initialized")
    
    async def shutdown(self) -> None:
        """Shutdown master agent."""
        self.logger.info("abaporu_shutting_down")
        
        # Cleanup resources
        if hasattr(self.llm_service, 'shutdown'):
            await self.llm_service.shutdown()
        
        if hasattr(self.memory_agent, 'shutdown'):
            await self.memory_agent.shutdown()
        
        self.active_investigations.clear()
        self.agent_registry.clear()
        
        self.logger.info("abaporu_shutdown_complete")
    
    def register_agent(self, agent_name: str, agent_instance: Any) -> None:
        """
        Register a sub-agent with the master agent.
        
        Args:
            agent_name: Name of the agent
            agent_instance: Agent instance
        """
        self.agent_registry[agent_name] = agent_instance
        self.logger.info(
            "agent_registered",
            agent_name=agent_name,
            total_agents=len(self.agent_registry),
        )
    
    async def process(
        self,
        message: AgentMessage,
        context: AgentContext,
    ) -> AgentResponse:
        """
        Process a message using the master agent.
        
        Args:
            message: Message to process
            context: Agent context
            
        Returns:
            Agent response
        """
        action = message.action
        payload = message.payload
        
        self.logger.info(
            "master_agent_processing",
            action=action,
            investigation_id=context.investigation_id,
        )
        
        try:
            if action == "investigate":
                result = await self._investigate(payload, context)
            elif action == "plan_investigation":
                result = await self._plan_investigation(payload, context)
            elif action == "monitor_progress":
                result = await self._monitor_progress(payload, context)
            elif action == "adapt_strategy":
                result = await self._adapt_strategy(payload, context)
            else:
                raise AgentExecutionError(
                    f"Unknown action: {action}",
                    details={"action": action, "available_actions": self.capabilities}
                )
            
            return AgentResponse(
                agent_name=self.name,
                status=AgentStatus.COMPLETED,
                result=result,
                metadata={"action": action, "investigation_id": context.investigation_id},
            )
            
        except Exception as e:
            self.logger.error(
                "master_agent_processing_failed",
                action=action,
                error=str(e),
                investigation_id=context.investigation_id,
            )
            
            return AgentResponse(
                agent_name=self.name,
                status=AgentStatus.ERROR,
                error=str(e),
                metadata={"action": action, "investigation_id": context.investigation_id},
            )
    
    async def _investigate(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> InvestigationResult:
        """
        Conduct a full investigation.
        
        Args:
            payload: Investigation payload with query
            context: Agent context
            
        Returns:
            Investigation result
        """
        query = payload.get("query", "")
        if not query:
            raise InvestigationError("No query provided for investigation")
        
        investigation_id = context.investigation_id
        start_time = datetime.utcnow()
        
        self.logger.info(
            "investigation_started",
            investigation_id=investigation_id,
            query=query,
        )
        
        # Step 1: Create investigation plan
        plan = await self._plan_investigation({"query": query}, context)
        self.active_investigations[investigation_id] = plan
        
        # Step 2: Execute investigation steps in parallel when possible
        findings = []
        sources = []
        
        # Group steps that can be executed in parallel
        parallel_groups = self._group_parallel_steps(plan.steps)
        
        for group_idx, step_group in enumerate(parallel_groups):
            if len(step_group) > 1:
                # Execute in parallel
                self.logger.info(
                    f"Executing {len(step_group)} steps in parallel for group {group_idx}"
                )
                
                # Create parallel tasks
                tasks = []
                for step in step_group:
                    agent_type = self.agent_registry.get(step["agent"])
                    if agent_type:
                        task = ParallelTask(
                            agent_type=agent_type,
                            message=AgentMessage(
                                sender=self.name,
                                recipient=step["agent"],
                                action=step["action"],
                                payload=step.get("payload", {}),
                            ),
                            timeout=30.0,
                        )
                        tasks.append(task)
                
                # Execute parallel tasks
                parallel_results = await parallel_processor.execute_parallel(
                    tasks,
                    context,
                    strategy=ParallelStrategy.BEST_EFFORT
                )
                
                # Aggregate results
                aggregated = parallel_processor.aggregate_results(parallel_results)
                findings.extend(aggregated.get("findings", []))
                sources.extend(aggregated.get("sources", []))
                
            else:
                # Execute single step
                step = step_group[0]
                step_result = await self._execute_step(step, context)
                
                if step_result.status == AgentStatus.COMPLETED:
                    findings.extend(step_result.result.get("findings", []))
                    sources.extend(step_result.result.get("sources", []))
                else:
                    self.logger.warning(
                        "investigation_step_failed",
                        investigation_id=investigation_id,
                        step=step,
                        error=step_result.error,
                    )
        
        # Step 3: Generate explanation
        explanation = await self._generate_explanation(findings, query, context)
        
        # Step 4: Calculate confidence score
        confidence_score = self._calculate_confidence_score(findings, sources)
        
        # Step 5: Create result
        processing_time = (datetime.utcnow() - start_time).total_seconds() * 1000
        
        result = InvestigationResult(
            investigation_id=investigation_id,
            query=query,
            findings=findings,
            confidence_score=confidence_score,
            sources=list(set(sources)),
            explanation=explanation,
            metadata={
                "plan": plan.model_dump(),
                "steps_executed": len(plan.steps),
                "agents_used": plan.required_agents,
            },
            processing_time_ms=processing_time,
        )
        
        # Store in memory
        await self.memory_agent.store_investigation(result, context)
        
        self.logger.info(
            "investigation_completed",
            investigation_id=investigation_id,
            findings_count=len(findings),
            confidence_score=confidence_score,
            processing_time_ms=processing_time,
        )
        
        return result
    
    def _group_parallel_steps(self, steps: List[Dict[str, Any]]) -> List[List[Dict[str, Any]]]:
        """
        Group steps that can be executed in parallel.
        
        Steps can be parallel if they don't depend on each other's output.
        """
        groups = []
        current_group = []
        seen_agents = set()
        
        for step in steps:
            agent = step.get("agent", "")
            depends_on = step.get("depends_on", [])
            
            # Check if this step depends on any agent in current group
            depends_on_current = any(dep in seen_agents for dep in depends_on)
            
            if depends_on_current or agent in seen_agents:
                # Start new group
                if current_group:
                    groups.append(current_group)
                current_group = [step]
                seen_agents = {agent}
            else:
                # Add to current group
                current_group.append(step)
                seen_agents.add(agent)
        
        # Add final group
        if current_group:
            groups.append(current_group)
        
        return groups
    
    async def _plan_investigation(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> InvestigationPlan:
        """
        Create an investigation plan.
        
        Args:
            payload: Planning payload
            context: Agent context
            
        Returns:
            Investigation plan
        """
        query = payload.get("query", "")
        
        # Get relevant context from memory
        memory_context = await self.memory_agent.get_relevant_context(query, context)
        
        # Use LLM to generate plan
        planning_prompt = self._create_planning_prompt(query, memory_context)
        plan_response = await self.llm_service.generate(
            prompt=planning_prompt,
            context=context,
        )
        
        # Parse and validate plan
        plan = self._parse_investigation_plan(plan_response, query)
        
        self.logger.info(
            "investigation_plan_created",
            investigation_id=context.investigation_id,
            steps_count=len(plan.steps),
            required_agents=plan.required_agents,
        )
        
        return plan
    
    async def _execute_step(
        self,
        step: Dict[str, Any],
        context: AgentContext,
    ) -> AgentResponse:
        """
        Execute a single investigation step.
        
        Args:
            step: Investigation step
            context: Agent context
            
        Returns:
            Step result
        """
        agent_name = step.get("agent")
        action = step.get("action")
        parameters = step.get("parameters", {})
        
        if agent_name not in self.agent_registry:
            raise AgentExecutionError(
                f"Agent {agent_name} not registered",
                details={"agent": agent_name, "available_agents": list(self.agent_registry.keys())}
            )
        
        agent = self.agent_registry[agent_name]
        
        message = AgentMessage(
            sender=self.name,
            recipient=agent_name,
            action=action,
            payload=parameters,
            context=context.to_dict(),
        )
        
        return await agent.execute(action, parameters, context)
    
    async def _generate_explanation(
        self,
        findings: List[Dict[str, Any]],
        query: str,
        context: AgentContext,
    ) -> str:
        """
        Generate explanation for investigation findings.
        
        Args:
            findings: Investigation findings
            query: Original query
            context: Agent context
            
        Returns:
            Explanation text
        """
        explanation_prompt = self._create_explanation_prompt(findings, query)
        
        explanation = await self.llm_service.generate(
            prompt=explanation_prompt,
            context=context,
        )
        
        return explanation
    
    def _calculate_confidence_score(
        self,
        findings: List[Dict[str, Any]],
        sources: List[str],
    ) -> float:
        """
        Calculate confidence score for investigation results.
        
        Args:
            findings: Investigation findings
            sources: Data sources used
            
        Returns:
            Confidence score (0.0 to 1.0)
        """
        if not findings:
            return 0.0
        
        # Base confidence on number of findings and sources
        findings_score = min(len(findings) / 10, 1.0)  # More findings = higher confidence
        sources_score = min(len(sources) / 3, 1.0)      # More sources = higher confidence
        
        # Average anomaly scores from findings
        anomaly_scores = [f.get("anomaly_score", 0.0) for f in findings]
        avg_anomaly_score = sum(anomaly_scores) / len(anomaly_scores) if anomaly_scores else 0.0
        
        # Weighted average
        confidence = (
            findings_score * 0.3 +
            sources_score * 0.2 +
            avg_anomaly_score * 0.5
        )
        
        return min(confidence, 1.0)
    
    async def reflect(
        self,
        result: Any,
        context: AgentContext,
    ) -> Dict[str, Any]:
        """
        Reflect on investigation results and provide quality assessment.
        
        Args:
            result: Investigation result
            context: Agent context
            
        Returns:
            Reflection result
        """
        if not isinstance(result, InvestigationResult):
            return {
                "quality_score": 0.0,
                "issues": ["Invalid result type"],
                "suggestions": ["Fix result format"],
            }
        
        issues = []
        suggestions = []
        
        # Check completeness
        if not result.findings:
            issues.append("No findings generated")
            suggestions.append("Review investigation strategy")
        
        # Check confidence
        if result.confidence_score < 0.5:
            issues.append("Low confidence score")
            suggestions.append("Gather more data or use additional sources")
        
        # Check explanation quality
        if not result.explanation or len(result.explanation.strip()) < 50:
            issues.append("Poor explanation quality")
            suggestions.append("Generate more detailed explanation")
        
        # Check source diversity
        if len(result.sources) < 2:
            issues.append("Limited source diversity")
            suggestions.append("Include more data sources")
        
        # Calculate quality score
        quality_score = self._calculate_quality_score(result, issues)
        
        reflection = {
            "quality_score": quality_score,
            "issues": issues,
            "suggestions": suggestions,
            "reflection_type": ReflectionType.COMPLETENESS_CHECK.value,
            "metrics": {
                "findings_count": len(result.findings),
                "confidence_score": result.confidence_score,
                "sources_count": len(result.sources),
                "explanation_length": len(result.explanation) if result.explanation else 0,
            },
        }
        
        self.logger.info(
            "investigation_reflection",
            investigation_id=result.investigation_id,
            quality_score=quality_score,
            issues_count=len(issues),
        )
        
        return reflection
    
    def _calculate_quality_score(
        self,
        result: InvestigationResult,
        issues: List[str],
    ) -> float:
        """Calculate quality score based on result and issues."""
        base_score = 1.0
        
        # Deduct points for issues
        penalty_per_issue = 0.2
        score = base_score - (len(issues) * penalty_per_issue)
        
        # Bonus for high confidence
        if result.confidence_score > 0.8:
            score += 0.1
        
        # Bonus for good explanation
        if result.explanation and len(result.explanation) > 100:
            score += 0.1
        
        return max(0.0, min(1.0, score))
    
    def _create_planning_prompt(
        self,
        query: str,
        memory_context: Dict[str, Any],
    ) -> str:
        """Create prompt for investigation planning."""
        return f"""
        Você é um especialista em investigação de gastos públicos. 
        Crie um plano detalhado para investigar: "{query}"
        
        Contexto da memória: {memory_context}
        
        Agentes disponíveis:
        - InvestigatorAgent: detecta anomalias
        - AnalystAgent: analisa padrões
        - ReporterAgent: gera relatórios
        
        Forneça um plano estruturado com:
        1. Objetivo da investigação
        2. Passos específicos
        3. Agentes necessários
        4. Critérios de qualidade
        """
    
    def _create_explanation_prompt(
        self,
        findings: List[Dict[str, Any]],
        query: str,
    ) -> str:
        """Create prompt for explanation generation."""
        return f"""
        Explique em português claro os resultados da investigação sobre: "{query}"
        
        Achados: {findings}
        
        Forneça uma explicação que:
        1. Resumo dos principais achados
        2. Explique por que são suspeitos
        3. Contextualize com dados normais
        4. Sugira próximos passos
        """
    
    def _parse_investigation_plan(
        self,
        plan_response: str,
        query: str,
    ) -> InvestigationPlan:
        """Parse LLM response into investigation plan."""
        # This is a simplified parser - in production, use more robust parsing
        return InvestigationPlan(
            objective=f"Investigar: {query}",
            steps=[
                {
                    "agent": "InvestigatorAgent",
                    "action": "detect_anomalies",
                    "parameters": {"query": query},
                },
                {
                    "agent": "AnalystAgent",
                    "action": "analyze_patterns",
                    "parameters": {"query": query},
                },
            ],
            required_agents=["InvestigatorAgent", "AnalystAgent"],
            estimated_time=60,
            quality_criteria={"min_confidence": 0.7, "min_findings": 1},
        )
    
    async def _monitor_progress(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> Dict[str, Any]:
        """Monitor investigation progress."""
        investigation_id = context.investigation_id
        
        if investigation_id not in self.active_investigations:
            return {"status": "not_found", "message": "Investigation not found"}
        
        plan = self.active_investigations[investigation_id]
        
        return {
            "status": "active",
            "plan": plan.model_dump(),
            "progress": {
                "total_steps": len(plan.steps),
                "completed_steps": 0,  # Would track actual progress
            },
        }
    
    async def _adapt_strategy(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> Dict[str, Any]:
        """Adapt investigation strategy based on results."""
        # Implementation would analyze current results and modify strategy
        return {
            "status": "adapted",
            "changes": ["Added additional data source", "Increased confidence threshold"],
        }