File size: 62,404 Bytes
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c26ae
 
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c26ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c26ae
824bf31
 
 
 
f2c26ae
 
 
 
 
 
 
 
 
824bf31
 
 
f2c26ae
824bf31
f2c26ae
824bf31
 
 
 
 
 
f2c26ae
824bf31
 
 
 
 
f2c26ae
 
824bf31
 
 
f2c26ae
 
824bf31
 
f2c26ae
 
824bf31
 
 
 
 
 
f2c26ae
 
 
 
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c26ae
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c26ae
 
 
 
824bf31
 
 
 
 
 
 
 
f2c26ae
824bf31
 
f2c26ae
 
 
 
 
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
"""
Module: agents.anita
Codinome: Anita Garibaldi - Roteadora Semântica
Description: Agent specialized in pattern analysis and correlation detection in government data
Author: Anderson H. Silva
Date: 2025-01-24
License: Proprietary - All rights reserved
"""

import asyncio
from datetime import datetime, timedelta
from typing import Any, Dict, List, Optional, Tuple
from dataclasses import dataclass
from collections import defaultdict, Counter

import numpy as np
from pydantic import BaseModel, Field as PydanticField

from src.agents.deodoro import BaseAgent, AgentContext, AgentMessage, AgentResponse
from src.core import get_logger, AgentStatus
from src.core.exceptions import AgentExecutionError, DataAnalysisError
from src.tools.transparency_api import TransparencyAPIClient, TransparencyAPIFilter
from src.ml.spectral_analyzer import SpectralAnalyzer, SpectralFeatures, PeriodicPattern


@dataclass
class PatternResult:
    """Result of pattern analysis."""
    
    pattern_type: str
    description: str
    significance: float  # 0.0 to 1.0
    confidence: float  # 0.0 to 1.0
    insights: List[str]
    evidence: Dict[str, Any]
    recommendations: List[str]
    entities_involved: List[Dict[str, Any]]
    trend_direction: Optional[str] = None  # "increasing", "decreasing", "stable"
    correlation_strength: Optional[float] = None


@dataclass
class CorrelationResult:
    """Result of correlation analysis."""
    
    correlation_type: str
    variables: List[str]
    correlation_coefficient: float
    p_value: Optional[float]
    significance_level: str  # "high", "medium", "low"
    description: str
    business_interpretation: str
    evidence: Dict[str, Any]
    recommendations: List[str]


class AnalysisRequest(BaseModel):
    """Request for pattern and correlation analysis."""
    
    query: str = PydanticField(description="Natural language analysis query")
    analysis_types: Optional[List[str]] = PydanticField(default=None, description="Types of analysis to perform")
    time_period: Optional[str] = PydanticField(default="12_months", description="Time period for analysis")
    organization_codes: Optional[List[str]] = PydanticField(default=None, description="Organizations to analyze")
    focus_areas: Optional[List[str]] = PydanticField(default=None, description="Specific areas to focus on")
    comparison_mode: bool = PydanticField(default=False, description="Enable comparison between entities")
    max_records: int = PydanticField(default=200, description="Maximum records for analysis")


class AnalystAgent(BaseAgent):
    """
    Agent specialized in pattern analysis and correlation detection in government data.
    
    Capabilities:
    - Spending trend analysis over time
    - Organizational spending pattern comparison
    - Vendor market behavior analysis
    - Seasonal pattern detection
    - Contract value distribution analysis
    - Cross-organizational correlation analysis
    - Performance and efficiency metrics
    - Predictive trend modeling
    """
    
    def __init__(
        self,
        min_correlation_threshold: float = 0.3,
        significance_threshold: float = 0.05,
        trend_detection_window: int = 6,  # months
    ):
        """
        Initialize the Analyst Agent.
        
        Args:
            min_correlation_threshold: Minimum correlation coefficient to report
            significance_threshold: P-value threshold for statistical significance
            trend_detection_window: Number of periods for trend analysis
        """
        super().__init__(
            name="Anita",
            description="Anita Garibaldi - Agent specialized in pattern analysis and correlation detection",
            capabilities=[
                "spending_trend_analysis",
                "organizational_comparison",
                "vendor_behavior_analysis",
                "seasonal_pattern_detection",
                "value_distribution_analysis",
                "correlation_analysis",
                "efficiency_metrics",
                "predictive_modeling"
            ],
            max_retries=3,
            timeout=60
        )
        self.correlation_threshold = min_correlation_threshold
        self.significance_threshold = significance_threshold
        self.trend_window = trend_detection_window
        
        # Initialize spectral analyzer for frequency-domain analysis
        self.spectral_analyzer = SpectralAnalyzer()
        
        # Analysis methods registry
        self.analysis_methods = {
            "spending_trends": self._analyze_spending_trends,
            "organizational_patterns": self._analyze_organizational_patterns,
            "vendor_behavior": self._analyze_vendor_behavior,
            "seasonal_patterns": self._analyze_seasonal_patterns,
            "spectral_patterns": self._analyze_spectral_patterns,
            "cross_spectral_analysis": self._perform_cross_spectral_analysis,
            "value_distribution": self._analyze_value_distribution,
            "correlation_analysis": self._perform_correlation_analysis,
            "efficiency_metrics": self._calculate_efficiency_metrics,
        }
        
        self.logger.info(
            "analyst_agent_initialized",
            agent_name=self.name,
            correlation_threshold=min_correlation_threshold,
            significance_threshold=significance_threshold,
        )
    
    async def initialize(self) -> None:
        """Initialize agent resources."""
        self.logger.info(f"{self.name} agent initialized")
    
    async def shutdown(self) -> None:
        """Cleanup agent resources."""
        self.logger.info(f"{self.name} agent shutting down")
    
    async def process(
        self,
        message: AgentMessage,
        context: AgentContext
    ) -> AgentResponse:
        """
        Process pattern analysis request and return insights.
        
        Args:
            message: Analysis request message
            context: Agent execution context
            
        Returns:
            AgentResponse with patterns and correlations
        """
        try:
            self.logger.info(
                "analysis_started",
                investigation_id=context.investigation_id,
                agent_name=self.name,
                action=message.action,
            )
            
            # Parse analysis request
            if message.action == "analyze":
                request = AnalysisRequest(**message.payload)
            else:
                raise AgentExecutionError(
                    f"Unsupported action: {message.action}",
                    agent_id=self.name
                )
            
            # Fetch data for analysis
            analysis_data = await self._fetch_analysis_data(request, context)
            
            if not analysis_data:
                return AgentResponse(
                    agent_name=self.name,
                    status=AgentStatus.COMPLETED,
                    result={
                        "status": "no_data",
                        "message": "No data found for the specified criteria",
                        "patterns": [],
                        "correlations": [],
                        "summary": {"total_records": 0, "patterns_found": 0}
                    },
                    metadata={"investigation_id": context.investigation_id}
                )
            
            # Perform pattern analysis
            patterns = await self._run_pattern_analysis(analysis_data, request, context)
            
            # Perform correlation analysis
            correlations = await self._run_correlation_analysis(analysis_data, request, context)
            
            # Generate insights and recommendations
            insights = self._generate_insights(patterns, correlations, analysis_data)
            
            # Create result message
            result = {
                "status": "completed",
                "query": request.query,
                "patterns": [self._pattern_to_dict(p) for p in patterns],
                "correlations": [self._correlation_to_dict(c) for c in correlations],
                "insights": insights,
                "summary": self._generate_analysis_summary(analysis_data, patterns, correlations),
                "metadata": {
                    "investigation_id": context.investigation_id,
                    "timestamp": datetime.utcnow().isoformat(),
                    "agent_name": self.name,
                    "records_analyzed": len(analysis_data),
                    "patterns_found": len(patterns),
                    "correlations_found": len(correlations),
                }
            }
            
            self.logger.info(
                "analysis_completed",
                investigation_id=context.investigation_id,
                records_analyzed=len(analysis_data),
                patterns_found=len(patterns),
                correlations_found=len(correlations),
            )
            
            return AgentResponse(
                agent_name=self.name,
                status=AgentStatus.COMPLETED,
                result=result,
                metadata={"investigation_id": context.investigation_id}
            )
            
        except Exception as e:
            self.logger.error(
                "analysis_failed",
                investigation_id=context.investigation_id,
                error=str(e),
                agent_name=self.name,
            )
            
            return AgentResponse(
                agent_name=self.name,
                status=AgentStatus.ERROR,
                error=str(e),
                result={
                    "status": "error",
                    "error": str(e),
                    "investigation_id": context.investigation_id,
                },
                metadata={"investigation_id": context.investigation_id}
            )
    
    async def _fetch_analysis_data(
        self,
        request: AnalysisRequest,
        context: AgentContext
    ) -> List[Dict[str, Any]]:
        """
        Fetch comprehensive data for pattern analysis.
        
        Args:
            request: Analysis parameters
            context: Agent context
            
        Returns:
            List of contract records for analysis
        """
        all_contracts = []
        
        # Expanded organization codes for broader analysis
        org_codes = request.organization_codes or [
            "26000",  # Ministério da Saúde
            "20000",  # Presidência da República
            "25000",  # Ministério da Educação
            "36000",  # Ministério da Defesa
            "44000",  # Ministério do Desenvolvimento Social
            "30000",  # Ministério da Justiça
        ]
        
        async with TransparencyAPIClient() as client:
            for org_code in org_codes:
                try:
                    # Fetch data for multiple months to enable trend analysis
                    for month in range(1, 13):  # Full year
                        filters = TransparencyAPIFilter(
                            codigo_orgao=org_code,
                            ano=2024,
                            mes=month,
                            pagina=1,
                            tamanho_pagina=min(20, request.max_records // (len(org_codes) * 12))
                        )
                        
                        response = await client.get_contracts(filters)
                        
                        # Enrich each contract with metadata
                        for contract in response.data:
                            contract["_org_code"] = org_code
                            contract["_month"] = month
                            contract["_year"] = 2024
                            contract["_fetch_timestamp"] = datetime.utcnow().isoformat()
                        
                        all_contracts.extend(response.data)
                        
                        # Rate limiting consideration
                        await asyncio.sleep(0.1)
                    
                    self.logger.info(
                        "organization_data_fetched",
                        org_code=org_code,
                        total_records=len([c for c in all_contracts if c.get("_org_code") == org_code]),
                        investigation_id=context.investigation_id,
                    )
                    
                except Exception as e:
                    self.logger.warning(
                        "organization_data_fetch_failed",
                        org_code=org_code,
                        error=str(e),
                        investigation_id=context.investigation_id,
                    )
                    continue
        
        return all_contracts[:request.max_records]
    
    async def _run_pattern_analysis(
        self,
        data: List[Dict[str, Any]],
        request: AnalysisRequest,
        context: AgentContext
    ) -> List[PatternResult]:
        """
        Run pattern analysis algorithms on the data.
        
        Args:
            data: Contract records to analyze
            request: Analysis parameters
            context: Agent context
            
        Returns:
            List of detected patterns
        """
        all_patterns = []
        
        # Determine which analysis types to run
        types_to_run = request.analysis_types or list(self.analysis_methods.keys())
        types_to_run = [t for t in types_to_run if t != "correlation_analysis"]  # Handle separately
        
        for analysis_type in types_to_run:
            if analysis_type in self.analysis_methods:
                try:
                    method = self.analysis_methods[analysis_type]
                    patterns = await method(data, context)
                    all_patterns.extend(patterns)
                    
                    self.logger.info(
                        "pattern_analysis_completed",
                        type=analysis_type,
                        patterns_found=len(patterns),
                        investigation_id=context.investigation_id,
                    )
                    
                except Exception as e:
                    self.logger.error(
                        "pattern_analysis_failed",
                        type=analysis_type,
                        error=str(e),
                        investigation_id=context.investigation_id,
                    )
        
        # Sort patterns by significance
        all_patterns.sort(key=lambda x: x.significance, reverse=True)
        
        return all_patterns
    
    async def _run_correlation_analysis(
        self,
        data: List[Dict[str, Any]],
        request: AnalysisRequest,
        context: AgentContext
    ) -> List[CorrelationResult]:
        """
        Run correlation analysis on the data.
        
        Args:
            data: Contract records to analyze
            request: Analysis parameters
            context: Agent context
            
        Returns:
            List of detected correlations
        """
        correlations = []
        
        if "correlation_analysis" in (request.analysis_types or ["correlation_analysis"]):
            try:
                correlations = await self._perform_correlation_analysis(data, context)
                
                self.logger.info(
                    "correlation_analysis_completed",
                    correlations_found=len(correlations),
                    investigation_id=context.investigation_id,
                )
                
            except Exception as e:
                self.logger.error(
                    "correlation_analysis_failed",
                    error=str(e),
                    investigation_id=context.investigation_id,
                )
        
        return correlations
    
    async def _analyze_spending_trends(
        self,
        data: List[Dict[str, Any]],
        context: AgentContext
    ) -> List[PatternResult]:
        """Analyze spending trends over time."""
        patterns = []
        
        # Group spending by month
        monthly_spending = defaultdict(float)
        monthly_counts = defaultdict(int)
        
        for contract in data:
            month = contract.get("_month")
            valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
            
            if month and isinstance(valor, (int, float)):
                monthly_spending[month] += float(valor)
                monthly_counts[month] += 1
        
        if len(monthly_spending) < 3:
            return patterns
        
        # Calculate trend
        months = sorted(monthly_spending.keys())
        values = [monthly_spending[m] for m in months]
        
        # Simple linear regression for trend
        x = np.array(range(len(months)))
        y = np.array(values)
        
        if len(x) > 1 and np.std(y) > 0:
            correlation = np.corrcoef(x, y)[0, 1]
            slope = np.polyfit(x, y, 1)[0]
            
            # Determine trend direction and significance
            if abs(correlation) > 0.5:
                trend_direction = "increasing" if slope > 0 else "decreasing"
                significance = abs(correlation)
                
                pattern = PatternResult(
                    pattern_type="spending_trends",
                    description=f"Tendência de gastos {trend_direction} detectada",
                    significance=significance,
                    confidence=abs(correlation),
                    insights=[
                        f"Gastos apresentam tendência {trend_direction} com correlação de {correlation:.2f}",
                        f"Variação média mensal: R$ {slope:,.2f}",
                        f"Período analisado: {len(months)} meses",
                    ],
                    evidence={
                        "monthly_spending": dict(monthly_spending),
                        "trend_correlation": correlation,
                        "monthly_slope": slope,
                        "total_value": sum(values),
                        "average_monthly": np.mean(values),
                    },
                    recommendations=[
                        "Investigar fatores que causam a tendência observada",
                        "Analisar planejamento orçamentário",
                        "Verificar sazonalidade nos gastos",
                        "Monitorar sustentabilidade da tendência",
                    ],
                    entities_involved=[{
                        "type": "monthly_data",
                        "months_analyzed": len(months),
                        "total_contracts": sum(monthly_counts.values()),
                    }],
                    trend_direction=trend_direction,
                    correlation_strength=abs(correlation),
                )
                
                patterns.append(pattern)
        
        return patterns
    
    async def _analyze_organizational_patterns(
        self,
        data: List[Dict[str, Any]],
        context: AgentContext
    ) -> List[PatternResult]:
        """Analyze spending patterns across organizations."""
        patterns = []
        
        # Group by organization
        org_stats = defaultdict(lambda: {"total_value": 0, "count": 0, "contracts": []})
        
        for contract in data:
            org_code = contract.get("_org_code")
            valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
            
            if org_code and isinstance(valor, (int, float)):
                org_stats[org_code]["total_value"] += float(valor)
                org_stats[org_code]["count"] += 1
                org_stats[org_code]["contracts"].append(contract)
        
        if len(org_stats) < 2:
            return patterns
        
        # Calculate organization efficiency metrics
        org_efficiency = {}
        for org_code, stats in org_stats.items():
            if stats["count"] > 0:
                avg_contract_value = stats["total_value"] / stats["count"]
                org_efficiency[org_code] = {
                    "avg_contract_value": avg_contract_value,
                    "total_value": stats["total_value"],
                    "contract_count": stats["count"],
                    "efficiency_ratio": stats["total_value"] / stats["count"],
                }
        
        # Find organizations with unusual patterns
        avg_values = [eff["avg_contract_value"] for eff in org_efficiency.values()]
        mean_avg = np.mean(avg_values)
        std_avg = np.std(avg_values)
        
        for org_code, efficiency in org_efficiency.items():
            if std_avg > 0:
                z_score = (efficiency["avg_contract_value"] - mean_avg) / std_avg
                
                if abs(z_score) > 1.5:  # Significant deviation
                    pattern_type = "high_value_contracts" if z_score > 0 else "low_value_contracts"
                    significance = min(abs(z_score) / 3.0, 1.0)
                    
                    pattern = PatternResult(
                        pattern_type="organizational_patterns",
                        description=f"Padrão organizacional atípico: {org_code}",
                        significance=significance,
                        confidence=min(abs(z_score) / 2.0, 1.0),
                        insights=[
                            f"Organização {org_code} apresenta padrão atípico de contratação",
                            f"Valor médio por contrato: R$ {efficiency['avg_contract_value']:,.2f}",
                            f"Desvio da média geral: {z_score:.1f} desvios padrão",
                        ],
                        evidence={
                            "organization_code": org_code,
                            "avg_contract_value": efficiency["avg_contract_value"],
                            "total_value": efficiency["total_value"],
                            "contract_count": efficiency["contract_count"],
                            "z_score": z_score,
                            "market_average": mean_avg,
                        },
                        recommendations=[
                            "Investigar critérios de contratação da organização",
                            "Comparar com organizações similares",
                            "Analisar eficiência dos processos",
                            "Verificar adequação dos valores contratados",
                        ],
                        entities_involved=[{
                            "organization": org_code,
                            "total_contracts": efficiency["contract_count"],
                            "total_value": efficiency["total_value"],
                        }],
                    )
                    
                    patterns.append(pattern)
        
        return patterns
    
    async def _analyze_vendor_behavior(
        self,
        data: List[Dict[str, Any]],
        context: AgentContext
    ) -> List[PatternResult]:
        """Analyze vendor behavior patterns."""
        patterns = []
        
        # Group by vendor
        vendor_stats = defaultdict(lambda: {
            "contracts": [],
            "total_value": 0,
            "organizations": set(),
            "months": set(),
        })
        
        for contract in data:
            supplier = contract.get("fornecedor", {})
            vendor_name = supplier.get("nome", "Unknown")
            valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
            org_code = contract.get("_org_code")
            month = contract.get("_month")
            
            if vendor_name != "Unknown" and isinstance(valor, (int, float)):
                vendor_stats[vendor_name]["contracts"].append(contract)
                vendor_stats[vendor_name]["total_value"] += float(valor)
                if org_code:
                    vendor_stats[vendor_name]["organizations"].add(org_code)
                if month:
                    vendor_stats[vendor_name]["months"].add(month)
        
        # Analyze multi-organization vendors
        for vendor_name, stats in vendor_stats.items():
            org_count = len(stats["organizations"])
            contract_count = len(stats["contracts"])
            
            # Check for vendors working with multiple organizations
            if org_count >= 3 and contract_count >= 5:
                significance = min(org_count / 6.0, 1.0)  # Normalize to max 6 orgs
                
                pattern = PatternResult(
                    pattern_type="vendor_behavior",
                    description=f"Fornecedor multi-organizacional: {vendor_name}",
                    significance=significance,
                    confidence=min(contract_count / 10.0, 1.0),
                    insights=[
                        f"Fornecedor atua em {org_count} organizações diferentes",
                        f"Total de {contract_count} contratos",
                        f"Valor total: R$ {stats['total_value']:,.2f}",
                        f"Presença em {len(stats['months'])} meses diferentes",
                    ],
                    evidence={
                        "vendor_name": vendor_name,
                        "organization_count": org_count,
                        "contract_count": contract_count,
                        "total_value": stats["total_value"],
                        "organizations": list(stats["organizations"]),
                        "months_active": len(stats["months"]),
                    },
                    recommendations=[
                        "Verificar especialização do fornecedor",
                        "Analisar competitividade dos processos",
                        "Investigar relacionamento com múltiplas organizações",
                        "Revisar histórico de performance",
                    ],
                    entities_involved=[{
                        "vendor": vendor_name,
                        "organizations": list(stats["organizations"]),
                        "contract_count": contract_count,
                    }],
                )
                
                patterns.append(pattern)
        
        return patterns
    
    async def _analyze_seasonal_patterns(
        self,
        data: List[Dict[str, Any]],
        context: AgentContext
    ) -> List[PatternResult]:
        """Analyze seasonal patterns in contracting."""
        patterns = []
        
        # Group by month
        monthly_activity = defaultdict(lambda: {"count": 0, "value": 0})
        
        for contract in data:
            month = contract.get("_month")
            valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
            
            if month and isinstance(valor, (int, float)):
                monthly_activity[month]["count"] += 1
                monthly_activity[month]["value"] += float(valor)
        
        if len(monthly_activity) < 6:  # Need at least half year
            return patterns
        
        # Calculate monthly averages
        months = sorted(monthly_activity.keys())
        counts = [monthly_activity[m]["count"] for m in months]
        values = [monthly_activity[m]["value"] for m in months]
        
        # Detect end-of-year rush (December spike)
        if 12 in monthly_activity and len(months) >= 6:
            dec_count = monthly_activity[12]["count"]
            avg_count = np.mean([monthly_activity[m]["count"] for m in months if m != 12])
            
            if avg_count > 0:
                dec_ratio = dec_count / avg_count
                
                if dec_ratio > 1.5:  # 50% above average
                    significance = min((dec_ratio - 1) / 2, 1.0)
                    
                    pattern = PatternResult(
                        pattern_type="seasonal_patterns",
                        description="Padrão sazonal: concentração em dezembro",
                        significance=significance,
                        confidence=min(dec_ratio / 2.0, 1.0),
                        insights=[
                            f"Dezembro apresenta {dec_ratio:.1f}x mais contratos que a média",
                            f"Contratos em dezembro: {dec_count}",
                            f"Média mensal: {avg_count:.1f}",
                            "Possível correria de fim de ano orçamentário",
                        ],
                        evidence={
                            "december_count": dec_count,
                            "average_monthly_count": avg_count,
                            "december_ratio": dec_ratio,
                            "monthly_distribution": dict(monthly_activity),
                        },
                        recommendations=[
                            "Melhorar planejamento anual de contratações",
                            "Distribuir contratações ao longo do ano",
                            "Investigar qualidade dos processos de fim de ano",
                            "Implementar cronograma de contratações",
                        ],
                        entities_involved=[{
                            "pattern": "end_of_year_rush",
                            "affected_months": [12],
                            "intensity": dec_ratio,
                        }],
                    )
                    
                    patterns.append(pattern)
        
        return patterns
    
    async def _analyze_value_distribution(
        self,
        data: List[Dict[str, Any]],
        context: AgentContext
    ) -> List[PatternResult]:
        """Analyze contract value distribution patterns."""
        patterns = []
        
        # Extract contract values
        values = []
        for contract in data:
            valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
            if isinstance(valor, (int, float)) and valor > 0:
                values.append(float(valor))
        
        if len(values) < 10:
            return patterns
        
        # Calculate distribution statistics
        values_array = np.array(values)
        
        # Check for unusual distribution patterns
        percentiles = np.percentile(values_array, [25, 50, 75, 90, 95, 99])
        
        # Detect heavy concentration in specific value ranges
        value_ranges = {
            "micro": (0, 8000),          # Dispensas
            "small": (8000, 176000),     # Convites
            "medium": (176000, 1500000), # Tomadas de preço
            "large": (1500000, float('inf'))  # Concorrências
        }
        
        range_counts = {}
        range_values = {}
        
        for range_name, (min_val, max_val) in value_ranges.items():
            count = sum(1 for v in values if min_val <= v < max_val)
            total_val = sum(v for v in values if min_val <= v < max_val)
            range_counts[range_name] = count
            range_values[range_name] = total_val
        
        total_contracts = len(values)
        total_value = sum(values)
        
        # Check for unusual concentrations
        for range_name, count in range_counts.items():
            percentage = count / total_contracts if total_contracts > 0 else 0
            value_percentage = range_values[range_name] / total_value if total_value > 0 else 0
            
            # Detect if one range dominates
            if percentage > 0.7:  # 70% of contracts in one range
                significance = percentage
                
                pattern = PatternResult(
                    pattern_type="value_distribution",
                    description=f"Concentração em contratos de valor {range_name}",
                    significance=significance,
                    confidence=percentage,
                    insights=[
                        f"{percentage:.1%} dos contratos estão na faixa {range_name}",
                        f"Representam {value_percentage:.1%} do valor total",
                        f"Total de {count} contratos nesta faixa",
                        f"Faixa de valores: R$ {value_ranges[range_name][0]:,.2f} - R$ {value_ranges[range_name][1]:,.2f}",
                    ],
                    evidence={
                        "range_name": range_name,
                        "concentration_percentage": percentage * 100,
                        "value_percentage": value_percentage * 100,
                        "contract_count": count,
                        "range_limits": value_ranges[range_name],
                        "distribution": range_counts,
                    },
                    recommendations=[
                        "Analisar adequação dos valores contratados",
                        "Verificar se há fracionamento inadequado",
                        "Revisar modalidades licitatórias utilizadas",
                        "Comparar com benchmarks do setor",
                    ],
                    entities_involved=[{
                        "value_range": range_name,
                        "contract_count": count,
                        "percentage": percentage * 100,
                    }],
                )
                
                patterns.append(pattern)
        
        return patterns
    
    async def _perform_correlation_analysis(
        self,
        data: List[Dict[str, Any]],
        context: AgentContext
    ) -> List[CorrelationResult]:
        """Perform correlation analysis between variables."""
        correlations = []
        
        # Prepare data for correlation analysis
        # Group by organization and month for time series
        org_month_data = defaultdict(lambda: defaultdict(lambda: {"count": 0, "value": 0}))
        
        for contract in data:
            org_code = contract.get("_org_code")
            month = contract.get("_month")
            valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
            
            if org_code and month and isinstance(valor, (int, float)):
                org_month_data[org_code][month]["count"] += 1
                org_month_data[org_code][month]["value"] += float(valor)
        
        # Analyze correlation between contract count and average value
        if len(org_month_data) >= 3:
            monthly_counts = []
            monthly_avg_values = []
            
            for org_code, month_data in org_month_data.items():
                for month, stats in month_data.items():
                    if stats["count"] > 0:
                        monthly_counts.append(stats["count"])
                        monthly_avg_values.append(stats["value"] / stats["count"])
            
            if len(monthly_counts) >= 10 and len(monthly_avg_values) >= 10:
                # Calculate correlation between count and average value
                correlation_coef = np.corrcoef(monthly_counts, monthly_avg_values)[0, 1]
                
                if abs(correlation_coef) > self.correlation_threshold:
                    significance_level = "high" if abs(correlation_coef) > 0.7 else "medium"
                    
                    interpretation = (
                        "Correlação negativa indica que meses com mais contratos tendem a ter valores médios menores" 
                        if correlation_coef < 0 else
                        "Correlação positiva indica que meses com mais contratos tendem a ter valores médios maiores"
                    )
                    
                    correlation = CorrelationResult(
                        correlation_type="count_vs_value",
                        variables=["monthly_contract_count", "monthly_average_value"],
                        correlation_coefficient=correlation_coef,
                        p_value=None,  # Would need scipy.stats for p-value
                        significance_level=significance_level,
                        description=f"Correlação entre quantidade e valor médio de contratos",
                        business_interpretation=interpretation,
                        evidence={
                            "correlation_coefficient": correlation_coef,
                            "sample_size": len(monthly_counts),
                            "count_range": [min(monthly_counts), max(monthly_counts)],
                            "value_range": [min(monthly_avg_values), max(monthly_avg_values)],
                        },
                        recommendations=[
                            "Investigar fatores que influenciam essa correlação",
                            "Analisar estratégias de contratação",
                            "Verificar planejamento orçamentário",
                            "Monitorar tendências futuras",
                        ],
                    )
                    
                    correlations.append(correlation)
        
        return correlations
    
    async def _calculate_efficiency_metrics(
        self,
        data: List[Dict[str, Any]],
        context: AgentContext
    ) -> List[PatternResult]:
        """Calculate efficiency metrics for organizations."""
        patterns = []
        
        # Calculate metrics by organization
        org_metrics = defaultdict(lambda: {
            "total_value": 0,
            "contract_count": 0,
            "unique_vendors": set(),
            "months_active": set(),
        })
        
        for contract in data:
            org_code = contract.get("_org_code")
            valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
            supplier = contract.get("fornecedor", {}).get("nome")
            month = contract.get("_month")
            
            if org_code and isinstance(valor, (int, float)):
                org_metrics[org_code]["total_value"] += float(valor)
                org_metrics[org_code]["contract_count"] += 1
                if supplier:
                    org_metrics[org_code]["unique_vendors"].add(supplier)
                if month:
                    org_metrics[org_code]["months_active"].add(month)
        
        # Calculate efficiency scores
        efficiency_scores = {}
        for org_code, metrics in org_metrics.items():
            if metrics["contract_count"] > 0:
                vendor_diversity = len(metrics["unique_vendors"]) / metrics["contract_count"]
                avg_contract_value = metrics["total_value"] / metrics["contract_count"]
                activity_consistency = len(metrics["months_active"]) / 12  # Normalize to year
                
                # Composite efficiency score
                efficiency_score = (vendor_diversity * 0.4 + activity_consistency * 0.6)
                
                efficiency_scores[org_code] = {
                    "score": efficiency_score,
                    "vendor_diversity": vendor_diversity,
                    "avg_contract_value": avg_contract_value,
                    "activity_consistency": activity_consistency,
                    "metrics": metrics,
                }
        
        # Find organizations with notably high or low efficiency
        if efficiency_scores:
            scores = [eff["score"] for eff in efficiency_scores.values()]
            mean_score = np.mean(scores)
            std_score = np.std(scores)
            
            for org_code, efficiency in efficiency_scores.items():
                if std_score > 0:
                    z_score = (efficiency["score"] - mean_score) / std_score
                    
                    if abs(z_score) > 1.0:  # Significant deviation
                        performance_type = "high_efficiency" if z_score > 0 else "low_efficiency"
                        significance = min(abs(z_score) / 2.0, 1.0)
                        
                        pattern = PatternResult(
                            pattern_type="efficiency_metrics",
                            description=f"Performance organizacional {performance_type}: {org_code}",
                            significance=significance,
                            confidence=min(abs(z_score) / 1.5, 1.0),
                            insights=[
                                f"Score de eficiência: {efficiency['score']:.2f}",
                                f"Diversidade de fornecedores: {efficiency['vendor_diversity']:.2f}",
                                f"Consistência de atividade: {efficiency['activity_consistency']:.2f}",
                                f"Valor médio por contrato: R$ {efficiency['avg_contract_value']:,.2f}",
                            ],
                            evidence={
                                "organization": org_code,
                                "efficiency_score": efficiency["score"],
                                "vendor_diversity": efficiency["vendor_diversity"],
                                "activity_consistency": efficiency["activity_consistency"],
                                "z_score": z_score,
                                "benchmark_average": mean_score,
                            },
                            recommendations=[
                                "Analisar fatores que contribuem para a performance",
                                "Compartilhar boas práticas com outras organizações",
                                "Investigar oportunidades de melhoria" if z_score < 0 else "Manter padrão de excelência",
                                "Monitorar tendências de performance",
                            ],
                            entities_involved=[{
                                "organization": org_code,
                                "efficiency_score": efficiency["score"],
                                "performance_type": performance_type,
                            }],
                        )
                        
                        patterns.append(pattern)
        
        return patterns
    
    async def _analyze_spectral_patterns(
        self,
        data: List[Dict[str, Any]],
        request: AnalysisRequest,
        context: AgentContext
    ) -> List[PatternResult]:
        """
        Analyze spectral patterns using Fourier transforms.
        
        Args:
            data: Contract data for analysis
            request: Analysis request parameters
            context: Agent context
            
        Returns:
            List of spectral pattern results
        """
        patterns = []
        
        try:
            # Group data by organization for spectral analysis
            org_groups = defaultdict(list)
            for contract in data:
                org_code = contract.get("_org_code", "unknown")
                org_groups[org_code].append(contract)
            
            for org_code, org_contracts in org_groups.items():
                if len(org_contracts) < 30:  # Need sufficient data
                    continue
                
                # Prepare time series data
                time_series_data = self._prepare_time_series_for_org(org_contracts)
                if len(time_series_data) < 20:
                    continue
                
                # Extract spending values and timestamps
                spending_data = pd.Series([item['value'] for item in time_series_data])
                timestamps = pd.DatetimeIndex([item['date'] for item in time_series_data])
                
                # Perform spectral analysis
                spectral_features = self.spectral_analyzer.analyze_time_series(
                    spending_data, timestamps
                )
                
                # Find periodic patterns
                periodic_patterns = self.spectral_analyzer.find_periodic_patterns(
                    spending_data, timestamps, entity_name=f"Org_{org_code}"
                )
                
                # Convert to PatternResult objects
                for i, period_pattern in enumerate(periodic_patterns[:5]):  # Top 5 patterns
                    if period_pattern.amplitude > 0.1:  # Only significant patterns
                        pattern = PatternResult(
                            pattern_type="spectral_periodic",
                            description=f"Padrão periódico detectado: {period_pattern.period_days:.1f} dias",
                            significance=period_pattern.amplitude,
                            confidence=period_pattern.confidence,
                            insights=[
                                f"Período dominante: {period_pattern.period_days:.1f} dias",
                                f"Força do padrão: {period_pattern.amplitude:.1%}",
                                f"Tipo: {period_pattern.pattern_type}",
                                period_pattern.business_interpretation
                            ],
                            evidence={
                                "period_days": period_pattern.period_days,
                                "frequency_hz": period_pattern.frequency_hz,
                                "amplitude": period_pattern.amplitude,
                                "pattern_type": period_pattern.pattern_type,
                                "confidence": period_pattern.confidence,
                                "spectral_entropy": spectral_features.spectral_entropy,
                                "dominant_frequencies": spectral_features.dominant_frequencies,
                                "seasonal_components": spectral_features.seasonal_components
                            },
                            recommendations=[
                                f"Investigar causa do padrão de {period_pattern.period_days:.1f} dias",
                                "Verificar se corresponde a processos de negócio conhecidos",
                                "Analisar se há justificativa administrativa",
                                "Considerar otimização do cronograma de contratações"
                            ],
                            entities_involved=[{
                                "organization_code": org_code,
                                "contracts_analyzed": len(org_contracts),
                                "period_days": period_pattern.period_days,
                                "pattern_strength": period_pattern.amplitude
                            }],
                            trend_direction=self._classify_trend_from_spectral(spectral_features),
                            correlation_strength=period_pattern.amplitude
                        )
                        patterns.append(pattern)
                
                # Analyze overall spectral characteristics
                if spectral_features.spectral_entropy < 0.3:  # Low entropy indicates regular patterns
                    pattern = PatternResult(
                        pattern_type="spectral_regularity",
                        description=f"Padrão de gastos muito regular detectado (entropia: {spectral_features.spectral_entropy:.2f})",
                        significance=1 - spectral_features.spectral_entropy,
                        confidence=0.8,
                        insights=[
                            f"Entropia espectral baixa: {spectral_features.spectral_entropy:.2f}",
                            "Gastos seguem padrão muito regular",
                            "Pode indicar processos automatizados ou planejamento rígido",
                            f"Anomalia score: {spectral_features.anomaly_score:.2f}"
                        ],
                        evidence={
                            "spectral_entropy": spectral_features.spectral_entropy,
                            "anomaly_score": spectral_features.anomaly_score,
                            "dominant_frequencies": spectral_features.dominant_frequencies[:5],
                            "seasonal_components": spectral_features.seasonal_components
                        },
                        recommendations=[
                            "Verificar se a regularidade é justificada",
                            "Investigar processos de planejamento orçamentário",
                            "Analisar flexibilidade nos cronogramas",
                            "Considerar diversificação temporal"
                        ],
                        entities_involved=[{
                            "organization_code": org_code,
                            "spectral_entropy": spectral_features.spectral_entropy,
                            "regularity_score": 1 - spectral_features.spectral_entropy
                        }]
                    )
                    patterns.append(pattern)
            
            self.logger.info(
                "spectral_analysis_completed",
                patterns_found=len(patterns),
                organizations_analyzed=len(org_groups)
            )
            
        except Exception as e:
            self.logger.error(f"Error in spectral pattern analysis: {str(e)}")
        
        return patterns
    
    async def _perform_cross_spectral_analysis(
        self,
        data: List[Dict[str, Any]],
        request: AnalysisRequest,
        context: AgentContext
    ) -> List[CorrelationResult]:
        """
        Perform cross-spectral analysis between organizations.
        
        Args:
            data: Contract data for analysis
            request: Analysis request parameters
            context: Agent context
            
        Returns:
            List of cross-spectral correlation results
        """
        correlations = []
        
        try:
            # Group data by organization
            org_groups = defaultdict(list)
            for contract in data:
                org_code = contract.get("_org_code", "unknown")
                org_groups[org_code].append(contract)
            
            # Get organizations with sufficient data
            valid_orgs = {org: contracts for org, contracts in org_groups.items() 
                         if len(contracts) >= 30}
            
            if len(valid_orgs) < 2:
                return correlations
            
            org_list = list(valid_orgs.keys())
            
            # Perform pairwise cross-spectral analysis
            for i, org1 in enumerate(org_list):
                for org2 in org_list[i+1:]:
                    try:
                        # Prepare time series for both organizations
                        ts1 = self._prepare_time_series_for_org(valid_orgs[org1])
                        ts2 = self._prepare_time_series_for_org(valid_orgs[org2])
                        
                        if len(ts1) < 20 or len(ts2) < 20:
                            continue
                        
                        # Create comparable time series (same date range)
                        all_dates = sorted(set([item['date'] for item in ts1 + ts2]))
                        if len(all_dates) < 20:
                            continue
                        
                        # Create aligned series
                        data1 = pd.Series(index=all_dates, dtype=float).fillna(0)
                        data2 = pd.Series(index=all_dates, dtype=float).fillna(0)
                        
                        for item in ts1:
                            data1[item['date']] += item['value']
                        for item in ts2:
                            data2[item['date']] += item['value']
                        
                        timestamps = pd.DatetimeIndex(all_dates)
                        
                        # Perform cross-spectral analysis
                        cross_spectral_result = self.spectral_analyzer.cross_spectral_analysis(
                            data1, data2, f"Org_{org1}", f"Org_{org2}", timestamps
                        )
                        
                        if cross_spectral_result and cross_spectral_result.get('max_coherence', 0) > 0.5:
                            correlation = CorrelationResult(
                                correlation_type="cross_spectral",
                                variables=[f"Org_{org1}", f"Org_{org2}"],
                                correlation_coefficient=cross_spectral_result['correlation_coefficient'],
                                p_value=None,  # Not computed in spectral analysis
                                significance_level=self._assess_spectral_significance(
                                    cross_spectral_result['max_coherence']
                                ),
                                description=f"Correlação espectral entre organizações {org1} e {org2}",
                                business_interpretation=cross_spectral_result['business_interpretation'],
                                evidence={
                                    "max_coherence": cross_spectral_result['max_coherence'],
                                    "mean_coherence": cross_spectral_result['mean_coherence'],
                                    "correlated_periods_days": cross_spectral_result['correlated_periods_days'],
                                    "synchronization_score": cross_spectral_result['synchronization_score'],
                                    "correlated_frequencies": cross_spectral_result['correlated_frequencies']
                                },
                                recommendations=[
                                    "Investigar possível coordenação entre organizações",
                                    "Verificar se há fornecedores em comum",
                                    "Analisar sincronização de processos",
                                    "Revisar independência das contratações"
                                ]
                            )
                            correlations.append(correlation)
                    
                    except Exception as e:
                        self.logger.warning(f"Cross-spectral analysis failed for {org1}-{org2}: {str(e)}")
                        continue
            
            self.logger.info(
                "cross_spectral_analysis_completed",
                correlations_found=len(correlations),
                organizations_compared=len(org_list)
            )
            
        except Exception as e:
            self.logger.error(f"Error in cross-spectral analysis: {str(e)}")
        
        return correlations
    
    def _prepare_time_series_for_org(self, contracts: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """Prepare time series data for a specific organization."""
        time_series = []
        
        for contract in contracts:
            # Extract date
            date_str = (
                contract.get("dataAssinatura") or 
                contract.get("dataPublicacao") or
                contract.get("dataInicio")
            )
            
            if not date_str:
                continue
                
            try:
                # Parse date (DD/MM/YYYY format)
                date_parts = date_str.split("/")
                if len(date_parts) == 3:
                    day, month, year = int(date_parts[0]), int(date_parts[1]), int(date_parts[2])
                    date_obj = datetime(year, month, day)
                    
                    # Extract value
                    valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
                    if isinstance(valor, (int, float)) and valor > 0:
                        time_series.append({
                            'date': date_obj,
                            'value': float(valor),
                            'contract_id': contract.get('id')
                        })
                        
            except (ValueError, IndexError):
                continue
        
        # Sort by date and aggregate by date
        time_series.sort(key=lambda x: x['date'])
        
        # Aggregate by date
        daily_aggregates = defaultdict(float)
        for item in time_series:
            daily_aggregates[item['date']] += item['value']
        
        return [{'date': date, 'value': value} for date, value in daily_aggregates.items()]
    
    def _classify_trend_from_spectral(self, features: SpectralFeatures) -> Optional[str]:
        """Classify trend direction from spectral features."""
        # Analyze trend component
        if hasattr(features, 'trend_component') and len(features.trend_component) > 10:
            trend_start = np.mean(features.trend_component[:len(features.trend_component)//3])
            trend_end = np.mean(features.trend_component[-len(features.trend_component)//3:])
            
            if trend_end > trend_start * 1.1:
                return "increasing"
            elif trend_end < trend_start * 0.9:
                return "decreasing"
            else:
                return "stable"
        
        return None
    
    def _assess_spectral_significance(self, coherence: float) -> str:
        """Assess significance level of spectral coherence."""
        if coherence > 0.8:
            return "high"
        elif coherence > 0.6:
            return "medium"
        else:
            return "low"
    
    def _generate_insights(
        self,
        patterns: List[PatternResult],
        correlations: List[CorrelationResult],
        data: List[Dict[str, Any]]
    ) -> List[str]:
        """Generate high-level insights from analysis results."""
        insights = []
        
        # High-level data insights
        total_contracts = len(data)
        total_value = sum(
            float(c.get("valorInicial") or c.get("valorGlobal") or 0)
            for c in data
            if isinstance(c.get("valorInicial") or c.get("valorGlobal"), (int, float))
        )
        
        insights.append(f"Analisados {total_contracts} contratos totalizando R$ {total_value:,.2f}")
        
        # Pattern insights
        if patterns:
            high_significance = [p for p in patterns if p.significance > 0.7]
            insights.append(f"Identificados {len(patterns)} padrões, sendo {len(high_significance)} de alta significância")
            
            # Most significant pattern
            if high_significance:
                top_pattern = max(high_significance, key=lambda p: p.significance)
                insights.append(f"Padrão mais significativo: {top_pattern.description}")
        
        # Correlation insights
        if correlations:
            strong_correlations = [c for c in correlations if abs(c.correlation_coefficient) > 0.7]
            insights.append(f"Encontradas {len(correlations)} correlações, sendo {len(strong_correlations)} fortes")
        
        # Risk assessment
        risk_patterns = [p for p in patterns if p.pattern_type in ["spending_trends", "vendor_behavior"]]
        if risk_patterns:
            insights.append(f"Identificados {len(risk_patterns)} padrões que requerem atenção especial")
        
        return insights
    
    def _generate_analysis_summary(
        self,
        data: List[Dict[str, Any]],
        patterns: List[PatternResult],
        correlations: List[CorrelationResult]
    ) -> Dict[str, Any]:
        """Generate summary statistics for the analysis."""
        # Calculate basic statistics
        total_value = sum(
            float(c.get("valorInicial") or c.get("valorGlobal") or 0)
            for c in data
            if isinstance(c.get("valorInicial") or c.get("valorGlobal"), (int, float))
        )
        
        organizations = len(set(c.get("_org_code") for c in data if c.get("_org_code")))
        months_covered = len(set(c.get("_month") for c in data if c.get("_month")))
        
        # Pattern statistics
        pattern_types = Counter(p.pattern_type for p in patterns)
        high_significance_patterns = len([p for p in patterns if p.significance > 0.7])
        
        # Calculate overall analysis score
        analysis_score = min(
            (len(patterns) + len(correlations)) / max(len(data) / 10, 1) * 5,
            10
        )
        
        return {
            "total_records": len(data),
            "total_value": total_value,
            "organizations_analyzed": organizations,
            "months_covered": months_covered,
            "patterns_found": len(patterns),
            "correlations_found": len(correlations),
            "pattern_types": dict(pattern_types),
            "high_significance_patterns": high_significance_patterns,
            "analysis_score": analysis_score,
            "avg_contract_value": total_value / len(data) if data else 0,
        }
    
    def _pattern_to_dict(self, pattern: PatternResult) -> Dict[str, Any]:
        """Convert PatternResult to dictionary for serialization."""
        return {
            "type": pattern.pattern_type,
            "description": pattern.description,
            "significance": pattern.significance,
            "confidence": pattern.confidence,
            "insights": pattern.insights,
            "evidence": pattern.evidence,
            "recommendations": pattern.recommendations,
            "entities_involved": pattern.entities_involved,
            "trend_direction": pattern.trend_direction,
            "correlation_strength": pattern.correlation_strength,
        }
    
    def _correlation_to_dict(self, correlation: CorrelationResult) -> Dict[str, Any]:
        """Convert CorrelationResult to dictionary for serialization."""
        return {
            "type": correlation.correlation_type,
            "variables": correlation.variables,
            "correlation_coefficient": correlation.correlation_coefficient,
            "p_value": correlation.p_value,
            "significance_level": correlation.significance_level,
            "description": correlation.description,
            "business_interpretation": correlation.business_interpretation,
            "evidence": correlation.evidence,
            "recommendations": correlation.recommendations,
        }