File size: 14,860 Bytes
824bf31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
"""
Module: agents.dandara_agent
Description: Dandara - Social Justice Agent specialized in monitoring inclusion policies and social equity
Author: Anderson H. Silva
Date: 2025-01-24
License: Proprietary - All rights reserved
"""
import asyncio
from datetime import datetime, timedelta
from typing import Any, Dict, List, Optional, Tuple
from dataclasses import dataclass
import numpy as np
import pandas as pd
from pydantic import BaseModel, Field as PydanticField
from src.agents.deodoro import BaseAgent, AgentContext, AgentMessage, AgentResponse
from src.core import get_logger
from src.core.exceptions import AgentExecutionError, DataAnalysisError
@dataclass
class EquityAnalysisResult:
"""Result of social equity analysis."""
analysis_type: str
gini_coefficient: float # 0.0 to 1.0
equity_score: int # 0-100
population_affected: int
violations_detected: List[Dict[str, Any]]
gaps_identified: List[Dict[str, Any]]
recommendations: List[str]
evidence_sources: List[str]
analysis_timestamp: datetime
confidence_level: float
class SocialJusticeRequest(BaseModel):
"""Request for social justice analysis."""
query: str = PydanticField(description="Social equity analysis query")
target_groups: Optional[List[str]] = PydanticField(default=None, description="Specific demographic groups to analyze")
policy_areas: Optional[List[str]] = PydanticField(default=None, description="Policy areas (education, health, housing, etc)")
geographical_scope: Optional[str] = PydanticField(default=None, description="Geographic scope (municipality, state, federal)")
time_period: Optional[Tuple[str, str]] = PydanticField(default=None, description="Analysis period (start, end)")
metrics_focus: Optional[List[str]] = PydanticField(default=None, description="Specific metrics to focus on")
class DandaraAgent(BaseAgent):
"""
Dandara - Social Justice Agent
Specialized in monitoring inclusion policies, social equity, and distributive justice indicators.
Inspired by Dandara dos Palmares, warrior for social justice and equality.
"""
def __init__(self):
super().__init__(
name="dandara",
description="Social Justice Agent specialized in monitoring inclusion policies and social equity",
capabilities=[
"social_equity_analysis",
"inclusion_policy_monitoring",
"gini_coefficient_calculation",
"demographic_disparity_detection",
"social_justice_violation_identification",
"distributive_justice_assessment",
"policy_effectiveness_evaluation",
"intersectional_analysis",
"vulnerability_mapping",
"equity_gap_identification"
]
)
self.logger = get_logger("agent.dandara")
# Social justice analysis tools
self._equity_metrics = {
"gini_coefficient": self._calculate_gini,
"atkinson_index": self._calculate_atkinson,
"theil_index": self._calculate_theil,
"palma_ratio": self._calculate_palma,
"quintile_ratio": self._calculate_quintile_ratio
}
# Data sources for social analysis
self._data_sources = [
"IBGE", "DataSUS", "INEP", "MDS", "SNIS",
"Portal da Transparência", "RAIS", "PNAD"
]
async def process(
self,
message: AgentMessage,
context: AgentContext,
) -> AgentResponse:
"""
Process social justice analysis request.
Args:
message: Analysis request message
context: Agent execution context
Returns:
Social equity analysis results
"""
try:
self.logger.info(
"Processing social justice analysis request",
investigation_id=context.investigation_id,
message_type=message.type,
)
# Parse request
if isinstance(message.data, dict):
request = SocialJusticeRequest(**message.data)
else:
request = SocialJusticeRequest(query=str(message.data))
# Perform comprehensive social justice analysis
analysis_result = await self._analyze_social_equity(request, context)
# Generate actionable recommendations
recommendations = await self._generate_justice_recommendations(
analysis_result, request, context
)
# Create audit trail
audit_hash = self._generate_audit_hash(analysis_result, request)
response_data = {
"analysis_id": context.investigation_id,
"timestamp": datetime.utcnow().isoformat(),
"agent": "dandara",
"analysis_type": "social_justice",
"results": analysis_result,
"recommendations": recommendations,
"audit_hash": audit_hash,
"data_sources": self._data_sources,
"methodology": "gini_theil_palma_analysis",
"confidence": analysis_result.confidence_level
}
self.logger.info(
"Social justice analysis completed",
investigation_id=context.investigation_id,
equity_score=analysis_result.equity_score,
violations_count=len(analysis_result.violations_detected),
)
return AgentResponse(
agent_name=self.name,
response_type="social_justice_analysis",
data=response_data,
success=True,
context=context,
)
except Exception as e:
self.logger.error(
"Social justice analysis failed",
investigation_id=context.investigation_id,
error=str(e),
exc_info=True,
)
return AgentResponse(
agent_name=self.name,
response_type="error",
data={"error": str(e), "analysis_type": "social_justice"},
success=False,
context=context,
)
async def _analyze_social_equity(
self,
request: SocialJusticeRequest,
context: AgentContext
) -> EquityAnalysisResult:
"""Perform comprehensive social equity analysis."""
self.logger.info(
"Starting social equity analysis",
query=request.query,
target_groups=request.target_groups,
)
# Simulate comprehensive analysis (replace with real implementation)
await asyncio.sleep(2) # Simulate processing time
# Calculate equity metrics
gini_coeff = await self._calculate_regional_gini(request)
equity_score = max(0, min(100, int((1 - gini_coeff) * 100)))
# Identify violations and gaps
violations = await self._detect_equity_violations(request, context)
gaps = await self._identify_inclusion_gaps(request, context)
return EquityAnalysisResult(
analysis_type="comprehensive_social_equity",
gini_coefficient=gini_coeff,
equity_score=equity_score,
population_affected=self._estimate_affected_population(request),
violations_detected=violations,
gaps_identified=gaps,
recommendations=await self._generate_evidence_based_recommendations(violations, gaps),
evidence_sources=self._data_sources,
analysis_timestamp=datetime.utcnow(),
confidence_level=0.85
)
async def _calculate_regional_gini(self, request: SocialJusticeRequest) -> float:
"""Calculate Gini coefficient for specified region/groups."""
# Placeholder - implement real Gini calculation
return np.random.uniform(0.3, 0.7) # Brazil typically 0.5-0.6
async def _detect_equity_violations(
self,
request: SocialJusticeRequest,
context: AgentContext
) -> List[Dict[str, Any]]:
"""Detect potential equity violations."""
violations = []
# Simulate violation detection
violation_types = [
"discriminatory_resource_allocation",
"unequal_service_access",
"policy_exclusion_bias",
"demographic_underrepresentation"
]
for violation_type in violation_types[:2]: # Sample violations
violations.append({
"type": violation_type,
"severity": np.random.uniform(0.6, 0.9),
"legal_reference": "CF/88 Art. 5º",
"evidence": f"Statistical disparity detected in {violation_type}",
"affected_groups": request.target_groups or ["vulnerable_populations"],
"remediation_urgency": "high"
})
return violations
async def _identify_inclusion_gaps(
self,
request: SocialJusticeRequest,
context: AgentContext
) -> List[Dict[str, Any]]:
"""Identify inclusion gaps in policies."""
gaps = []
gap_areas = ["digital_inclusion", "healthcare_access", "education_equity", "employment_opportunities"]
for area in gap_areas[:3]: # Sample gaps
gaps.append({
"area": area,
"gap_size": np.random.uniform(0.3, 0.8),
"target_population": request.target_groups or ["general_population"],
"current_coverage": np.random.uniform(0.2, 0.7),
"recommended_coverage": 0.95,
"implementation_complexity": np.random.choice(["low", "medium", "high"])
})
return gaps
def _estimate_affected_population(self, request: SocialJusticeRequest) -> int:
"""Estimate affected population size."""
# Placeholder - implement real population estimation
return np.random.randint(50000, 2000000)
async def _generate_evidence_based_recommendations(
self,
violations: List[Dict[str, Any]],
gaps: List[Dict[str, Any]]
) -> List[str]:
"""Generate evidence-based recommendations."""
recommendations = [
"Implement targeted resource redistribution policies",
"Establish monitoring systems for equity metrics",
"Create inclusive policy design frameworks",
"Develop intersectional analysis capabilities",
"Enhance data collection on vulnerable groups"
]
# Customize based on findings
if violations:
recommendations.insert(0, "Address identified legal compliance violations immediately")
if gaps:
recommendations.append("Close identified inclusion gaps through targeted interventions")
return recommendations
async def _generate_justice_recommendations(
self,
analysis: EquityAnalysisResult,
request: SocialJusticeRequest,
context: AgentContext
) -> List[Dict[str, Any]]:
"""Generate detailed justice recommendations."""
recommendations = []
for rec_text in analysis.recommendations:
recommendations.append({
"recommendation": rec_text,
"priority": "high" if analysis.equity_score < 60 else "medium",
"implementation_timeframe": "immediate" if analysis.equity_score < 40 else "short_term",
"expected_impact": np.random.uniform(0.6, 0.9),
"required_resources": np.random.choice(["low", "medium", "high"]),
"stakeholders": ["government", "civil_society", "affected_communities"],
"success_metrics": [f"Improve equity score by {np.random.randint(10, 25)} points"]
})
return recommendations
def _generate_audit_hash(
self,
analysis: EquityAnalysisResult,
request: SocialJusticeRequest
) -> str:
"""Generate SHA-256 hash for audit trail."""
import hashlib
audit_data = f"{analysis.analysis_timestamp}{analysis.gini_coefficient}{len(analysis.violations_detected)}{request.query}"
return hashlib.sha256(audit_data.encode()).hexdigest()
# Equity calculation methods
async def _calculate_gini(self, data: List[float]) -> float:
"""Calculate Gini coefficient."""
if not data:
return 0.0
sorted_data = np.sort(data)
n = len(sorted_data)
cumsum = np.cumsum(sorted_data)
return (n + 1 - 2 * np.sum(cumsum) / cumsum[-1]) / n
async def _calculate_atkinson(self, data: List[float], epsilon: float = 0.5) -> float:
"""Calculate Atkinson inequality index."""
if not data:
return 0.0
mean_income = np.mean(data)
if epsilon == 1:
geometric_mean = np.exp(np.mean(np.log(data)))
return 1 - geometric_mean / mean_income
else:
weighted_sum = np.mean(np.power(data, 1 - epsilon))
return 1 - np.power(weighted_sum, 1/(1 - epsilon)) / mean_income
async def _calculate_theil(self, data: List[float]) -> float:
"""Calculate Theil inequality index."""
if not data:
return 0.0
mean_income = np.mean(data)
return np.mean((data / mean_income) * np.log(data / mean_income))
async def _calculate_palma(self, data: List[float]) -> float:
"""Calculate Palma ratio (top 10% / bottom 40%)."""
if len(data) < 10:
return 0.0
sorted_data = np.sort(data)
n = len(sorted_data)
bottom_40_pct = np.sum(sorted_data[:int(0.4 * n)])
top_10_pct = np.sum(sorted_data[int(0.9 * n):])
return top_10_pct / bottom_40_pct if bottom_40_pct > 0 else float('inf')
async def _calculate_quintile_ratio(self, data: List[float]) -> float:
"""Calculate ratio of top to bottom quintile."""
if len(data) < 5:
return 0.0
sorted_data = np.sort(data)
n = len(sorted_data)
bottom_quintile = np.mean(sorted_data[:int(0.2 * n)])
top_quintile = np.mean(sorted_data[int(0.8 * n):])
return top_quintile / bottom_quintile if bottom_quintile > 0 else float('inf') |