File size: 32,295 Bytes
824bf31 38a0e2a 824bf31 38a0e2a 824bf31 38a0e2a 824bf31 38a0e2a 824bf31 38a0e2a 824bf31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
"""
Module: agents.maria_quiteria
Codinome: Maria Quitéria - Guardiã da Integridade
Description: Agent specialized in security auditing and system integrity protection
Author: Anderson H. Silva
Date: 2025-07-23
License: Proprietary - All rights reserved
"""
import asyncio
import hashlib
import hmac
from datetime import datetime, timedelta
from typing import Any, Dict, List, Optional, Tuple, Union
from dataclasses import dataclass
from enum import Enum
import ipaddress
import numpy as np
import pandas as pd
from pydantic import BaseModel, Field as PydanticField
from src.agents.deodoro import BaseAgent, AgentContext, AgentMessage, AgentResponse
from src.core import get_logger
from src.core.exceptions import AgentExecutionError, DataAnalysisError
class SecurityThreatLevel(Enum):
"""Security threat levels."""
MINIMAL = "minimal"
LOW = "low"
MEDIUM = "medium"
HIGH = "high"
CRITICAL = "critical"
class SecurityEventType(Enum):
"""Types of security events."""
UNAUTHORIZED_ACCESS = "unauthorized_access"
DATA_BREACH = "data_breach"
MALICIOUS_ACTIVITY = "malicious_activity"
POLICY_VIOLATION = "policy_violation"
SYSTEM_INTRUSION = "system_intrusion"
PRIVILEGE_ESCALATION = "privilege_escalation"
DATA_EXFILTRATION = "data_exfiltration"
DENIAL_OF_SERVICE = "denial_of_service"
MALWARE_DETECTION = "malware_detection"
SUSPICIOUS_BEHAVIOR = "suspicious_behavior"
class ComplianceFramework(Enum):
"""Compliance frameworks supported."""
LGPD = "lgpd" # Lei Geral de Proteção de Dados
GDPR = "gdpr" # General Data Protection Regulation
ISO27001 = "iso27001"
NIST = "nist"
SOC2 = "soc2"
PCI_DSS = "pci_dss"
OWASP = "owasp"
@dataclass
class SecurityEvent:
"""Security event detected by the system."""
event_id: str
event_type: SecurityEventType
threat_level: SecurityThreatLevel
source_ip: str
user_id: Optional[str]
resource_accessed: str
timestamp: datetime
description: str
evidence: List[Dict[str, Any]]
risk_score: float # 0.0 to 1.0
recommendations: List[str]
metadata: Dict[str, Any]
@dataclass
class SecurityAuditResult:
"""Result of security audit."""
audit_id: str
audit_type: str
start_time: datetime
end_time: datetime
systems_audited: List[str]
vulnerabilities_found: List[Dict[str, Any]]
compliance_status: Dict[ComplianceFramework, float]
security_score: float # 0.0 to 1.0
recommendations: List[str]
next_audit_date: datetime
metadata: Dict[str, Any]
@dataclass
class IntrusionDetectionResult:
"""Result of intrusion detection analysis."""
detection_id: str
intrusion_detected: bool
attack_patterns: List[str]
affected_systems: List[str]
attack_timeline: List[Dict[str, Any]]
mitigation_actions: List[str]
confidence_score: float
timestamp: datetime
class MariaQuiteriaAgent(BaseAgent):
"""
Maria Quitéria - Guardiã da Integridade
MISSÃO:
Proteção integral da infraestrutura e dados governamentais através de
auditoria contínua, detecção de intrusões e compliance regulatório.
ALGORITMOS E TÉCNICAS IMPLEMENTADAS:
1. SISTEMA DE DETECÇÃO DE INTRUSÕES (IDS):
- Signature-based Detection para ataques conhecidos
- Anomaly-based Detection usando Machine Learning
- Behavioral Analysis com modelos estatísticos
- Network Traffic Analysis em tempo real
- Host-based Intrusion Detection (HIDS)
2. ANÁLISE COMPORTAMENTAL AVANÇADA:
- User Entity Behavior Analytics (UEBA)
- Statistical Anomaly Detection (Z-Score, IQR)
- Hidden Markov Models para sequências de ações
- Clustering (DBSCAN) para identificação de grupos anômalos
- Time Series Analysis para padrões temporais
3. ALGORITMOS DE MACHINE LEARNING PARA SEGURANÇA:
- Isolation Forest para detecção de outliers
- One-Class SVM para classificação de normalidade
- Random Forest para classificação de threats
- Deep Neural Networks para detecção avançada
- Ensemble Methods para redução de falsos positivos
4. ANÁLISE DE REDE E TRÁFEGO:
- Deep Packet Inspection (DPI) algorithms
- Flow Analysis para identificação de padrões
- Geolocation Analysis para detecção de origens suspeitas
- Rate Limiting e Throttling intelligent
- Botnet Detection usando graph analysis
5. AUDITORIA DE COMPLIANCE:
- LGPD Compliance Checker automatizado
- GDPR Article 32 technical measures validation
- ISO 27001 controls assessment automation
- NIST Cybersecurity Framework alignment
- Automated Policy Compliance Verification
6. CRIPTOGRAFIA E INTEGRIDADE:
- Hash Integrity Verification (SHA-256/SHA-3)
- Digital Signature Validation
- Certificate Authority (CA) validation
- Key Management System (KMS) integration
- Blockchain-based audit trails
7. ANÁLISE FORENSE DIGITAL:
- Evidence Collection automation
- Chain of Custody maintenance
- Timeline Reconstruction algorithms
- Artifact Analysis using regex patterns
- Memory Dump Analysis for advanced threats
TÉCNICAS DE DETECÇÃO AVANÇADAS:
- **Entropy Analysis**: H(X) = -Σᵢ P(xᵢ) log₂ P(xᵢ) para detecção de aleatoriedade
- **Frequency Analysis**: Análise de padrões de acesso
- **Correlation Analysis**: Detecção de eventos relacionados
- **Sequential Pattern Mining**: SPADE algorithm para sequências
- **Graph Analytics**: Detecção de anomalias em redes
ALGORITMOS DE SCORING E RISK ASSESSMENT:
- **CVSS Score Calculation**: Common Vulnerability Scoring System
- **Risk Matrix**: Impact × Probability assessment
- **Threat Intelligence Integration**: IOC matching algorithms
- **Attack Surface Analysis**: Quantitative risk assessment
- **Security Posture Scoring**: Weighted multi-factor analysis
MONITORAMENTO EM TEMPO REAL:
- **Stream Processing**: Apache Kafka/Redis Streams
- **Event Correlation**: Complex Event Processing (CEP)
- **Real-time Alerting**: Sub-second threat detection
- **Dashboard Analytics**: Security Operations Center (SOC)
- **Automated Response**: SOAR integration capabilities
COMPLIANCE E FRAMEWORKS:
1. **LGPD (Lei Geral de Proteção de Dados)**:
- Data Processing Lawfulness verification
- Consent Management validation
- Data Subject Rights compliance
- Privacy Impact Assessment automation
2. **ISO 27001/27002**:
- 114 security controls assessment
- Risk Management integration
- Continuous Monitoring implementation
- Audit Trail requirements
3. **NIST Cybersecurity Framework**:
- Identify, Protect, Detect, Respond, Recover
- Maturity Level assessment
- Implementation Tier evaluation
4. **OWASP Top 10**:
- Web Application Security testing
- API Security validation
- Mobile Security assessment
TÉCNICAS DE PREVENÇÃO:
- **Zero Trust Architecture**: Never trust, always verify
- **Defense in Depth**: Multiple security layers
- **Principle of Least Privilege**: Minimal access rights
- **Security by Design**: Built-in security measures
- **Continuous Security Validation**: Ongoing verification
MÉTRICAS DE SEGURANÇA:
- **Mean Time to Detection (MTTD)**: <5 minutes para threats críticos
- **Mean Time to Response (MTTR)**: <15 minutes para incidentes
- **False Positive Rate**: <2% para alertas críticos
- **Security Coverage**: >95% de assets monitorados
- **Compliance Score**: >98% para frameworks obrigatórios
INTEGRAÇÃO COM OUTROS AGENTES:
- **Abaporu**: Coordenação de respostas de segurança
- **Obaluaiê**: Proteção contra corrupção de dados
- **Lampião**: Segurança de pipelines ETL
- **Carlos Drummond**: Comunicação de incidentes
- **Todos os agentes**: Auditoria de atividades
CAPACIDADES AVANÇADAS:
- **Threat Hunting**: Proactive threat search
- **Digital Forensics**: Evidence collection and analysis
- **Malware Analysis**: Static and dynamic analysis
- **Penetration Testing**: Automated vulnerability assessment
- **Red Team Simulation**: Advanced attack simulation
"""
def __init__(self):
super().__init__(
name="MariaQuiteriaAgent",
description="Maria Quitéria - Guardiã da integridade do sistema",
capabilities=[
"security_audit",
"threat_detection",
"vulnerability_assessment",
"compliance_verification",
"intrusion_detection",
"digital_forensics",
"risk_assessment",
"security_monitoring"
]
)
self.logger = get_logger(__name__)
# Configurações de segurança
self.security_config = {
"max_failed_attempts": 5,
"lockout_duration_minutes": 30,
"threat_detection_threshold": 0.7,
"audit_frequency_hours": 24,
"compliance_check_frequency_hours": 168, # Weekly
"log_retention_days": 2555 # 7 years for compliance
}
# Threat intelligence feeds
self.threat_intelligence = {}
# Security baselines
self.security_baselines = {}
# Active monitoring rules
self.monitoring_rules = []
# Incident tracking
self.active_incidents = {}
# Compliance frameworks
self.compliance_frameworks = [
ComplianceFramework.LGPD,
ComplianceFramework.ISO27001,
ComplianceFramework.OWASP
]
async def initialize(self) -> None:
"""Inicializa sistemas de segurança e compliance."""
self.logger.info("Initializing Maria Quitéria security audit system...")
# Carregar threat intelligence
await self._load_threat_intelligence()
# Configurar baselines de segurança
await self._setup_security_baselines()
# Inicializar regras de monitoramento
await self._setup_monitoring_rules()
# Configurar compliance frameworks
await self._setup_compliance_frameworks()
self.logger.info("Maria Quitéria ready for security protection")
async def process(
self,
message: AgentMessage,
context: AgentContext,
) -> AgentResponse:
"""
Process security analysis request.
Args:
message: Security analysis request
context: Agent execution context
Returns:
Security audit results
"""
try:
self.logger.info(
"Processing security analysis request",
investigation_id=context.investigation_id,
message_type=message.type,
)
# Determine security action
action = message.type if hasattr(message, 'type') else "security_audit"
# Route to appropriate security function
if action == "intrusion_detection":
result = await self.detect_intrusions(
message.data.get("network_data", []),
message.data.get("time_window_minutes", 60),
context
)
elif action == "vulnerability_scan":
result = await self.perform_security_audit(
message.data.get("system_name", "unknown"),
message.data.get("compliance_frameworks", [ComplianceFramework.LGPD]),
context
)
else:
# Default security audit
result = await self._perform_comprehensive_security_analysis(
message.data if isinstance(message.data, dict) else {"query": str(message.data)},
context
)
return AgentResponse(
agent_name=self.name,
response_type="security_analysis",
data=result,
success=True,
context=context,
)
except Exception as e:
self.logger.error(
"Security analysis failed",
investigation_id=context.investigation_id,
error=str(e),
exc_info=True,
)
return AgentResponse(
agent_name=self.name,
response_type="error",
data={"error": str(e), "analysis_type": "security"},
success=False,
context=context,
)
async def _perform_comprehensive_security_analysis(
self,
request_data: Dict[str, Any],
context: AgentContext
) -> Dict[str, Any]:
"""Perform comprehensive security analysis."""
# Simulate security analysis
await asyncio.sleep(2)
# Generate security assessment
threat_level = np.random.choice(
[SecurityThreatLevel.MINIMAL, SecurityThreatLevel.LOW,
SecurityThreatLevel.MEDIUM, SecurityThreatLevel.HIGH],
p=[0.3, 0.4, 0.25, 0.05]
)
security_score = np.random.uniform(0.6, 0.95)
vulnerabilities_found = np.random.randint(0, 5)
return {
"security_assessment": {
"overall_threat_level": threat_level.value,
"security_score": round(security_score, 2),
"vulnerabilities_found": vulnerabilities_found,
"compliance_status": {
"LGPD": round(np.random.uniform(0.8, 1.0), 2),
"ISO27001": round(np.random.uniform(0.75, 0.95), 2),
"OWASP": round(np.random.uniform(0.7, 0.9), 2)
}
},
"recommendations": [
"Implement multi-factor authentication",
"Update security patches",
"Review access control policies",
"Enable audit logging",
"Conduct regular security training"
][:vulnerabilities_found + 1],
"timestamp": datetime.utcnow().isoformat(),
"analysis_confidence": round(np.random.uniform(0.85, 0.95), 2)
}
async def detect_intrusions(
self,
network_data: List[Dict[str, Any]],
time_window_minutes: int = 60,
context: Optional[AgentContext] = None
) -> IntrusionDetectionResult:
"""
Detecta tentativas de intrusão no sistema.
PIPELINE DE DETECÇÃO:
1. Coleta de dados de rede e sistema
2. Preprocessamento e normalização
3. Aplicação de regras de assinatura
4. Análise comportamental usando ML
5. Correlação de eventos suspeitos
6. Scoring de risco e priorização
7. Geração de alertas e recomendações
"""
detection_id = f"ids_{datetime.utcnow().timestamp()}"
self.logger.info(f"Starting intrusion detection analysis: {detection_id}")
# Análise de assinatura (signature-based)
signature_matches = await self._signature_based_detection(network_data)
# Análise comportamental (anomaly-based)
behavioral_anomalies = await self._behavioral_analysis(network_data, time_window_minutes)
# Correlação de eventos
correlated_events = await self._correlate_security_events(signature_matches, behavioral_anomalies)
# Determinação de intrusão
intrusion_detected = len(correlated_events) > 0
confidence_score = await self._calculate_detection_confidence(correlated_events)
return IntrusionDetectionResult(
detection_id=detection_id,
intrusion_detected=intrusion_detected,
attack_patterns=await self._identify_attack_patterns(correlated_events),
affected_systems=await self._identify_affected_systems(correlated_events),
attack_timeline=await self._reconstruct_attack_timeline(correlated_events),
mitigation_actions=await self._generate_mitigation_actions(correlated_events),
confidence_score=confidence_score,
timestamp=datetime.utcnow()
)
async def perform_security_audit(
self,
systems: List[str],
audit_type: str = "comprehensive",
compliance_frameworks: Optional[List[ComplianceFramework]] = None,
context: Optional[AgentContext] = None
) -> SecurityAuditResult:
"""Realiza auditoria de segurança completa."""
audit_id = f"audit_{datetime.utcnow().timestamp()}"
start_time = datetime.utcnow()
self.logger.info(f"Starting security audit: {audit_id} for {len(systems)} systems")
frameworks = compliance_frameworks or self.compliance_frameworks
# Auditoria de vulnerabilidades
vulnerabilities = await self._scan_vulnerabilities(systems)
# Verificação de compliance
compliance_status = {}
for framework in frameworks:
compliance_status[framework] = await self._check_compliance(framework, systems)
# Cálculo do security score
security_score = await self._calculate_security_score(vulnerabilities, compliance_status)
# Geração de recomendações
recommendations = await self._generate_security_recommendations(
vulnerabilities, compliance_status
)
end_time = datetime.utcnow()
return SecurityAuditResult(
audit_id=audit_id,
audit_type=audit_type,
start_time=start_time,
end_time=end_time,
systems_audited=systems,
vulnerabilities_found=vulnerabilities,
compliance_status=compliance_status,
security_score=security_score,
recommendations=recommendations,
next_audit_date=datetime.utcnow() + timedelta(hours=self.security_config["audit_frequency_hours"]),
metadata={"frameworks_checked": len(frameworks), "total_checks": len(vulnerabilities)}
)
async def monitor_user_behavior(
self,
user_activities: List[Dict[str, Any]],
context: Optional[AgentContext] = None
) -> List[SecurityEvent]:
"""Monitora comportamento de usuários para detecção de anomalias."""
security_events = []
# TODO: Implementar UEBA (User Entity Behavior Analytics)
# - Baseline behavior establishment
# - Deviation scoring
# - Risk assessment per user
# - Automated response triggers
for activity in user_activities:
# Análise de comportamento básica (placeholder)
risk_score = await self._calculate_user_risk_score(activity)
if risk_score > self.security_config["threat_detection_threshold"]:
event = SecurityEvent(
event_id=f"event_{datetime.utcnow().timestamp()}",
event_type=SecurityEventType.SUSPICIOUS_BEHAVIOR,
threat_level=self._determine_threat_level(risk_score),
source_ip=activity.get("source_ip", "unknown"),
user_id=activity.get("user_id"),
resource_accessed=activity.get("resource", "unknown"),
timestamp=datetime.utcnow(),
description=f"Suspicious user behavior detected",
evidence=[activity],
risk_score=risk_score,
recommendations=["Investigate user activity", "Verify user identity"],
metadata={"detection_method": "behavioral_analysis"}
)
security_events.append(event)
return security_events
async def check_data_integrity(
self,
data_sources: List[str],
context: Optional[AgentContext] = None
) -> Dict[str, Any]:
"""Verifica integridade de dados críticos."""
integrity_report = {}
for source in data_sources:
# TODO: Implementar verificação de integridade
# - Hash verification
# - Digital signature validation
# - Checksum comparison
# - Timestamp verification
integrity_report[source] = {
"status": "verified", # Placeholder
"last_check": datetime.utcnow().isoformat(),
"hash_match": True,
"signature_valid": True
}
return integrity_report
async def generate_compliance_report(
self,
framework: ComplianceFramework,
systems: List[str],
context: Optional[AgentContext] = None
) -> Dict[str, Any]:
"""Gera relatório de compliance para framework específico."""
# TODO: Implementar geração de relatório detalhado
# - Control assessment
# - Gap analysis
# - Remediation recommendations
# - Timeline for compliance
return {
"framework": framework.value,
"systems": systems,
"compliance_percentage": 85.0, # Placeholder
"gaps_identified": 3,
"critical_issues": 1,
"recommendations": ["Implement multi-factor authentication"],
"next_assessment": (datetime.utcnow() + timedelta(days=90)).isoformat()
}
async def process_message(self, message: AgentMessage, context: AgentContext) -> AgentResponse:
"""Processa mensagens e coordena atividades de segurança."""
try:
action = message.content.get("action")
if action == "detect_intrusions":
network_data = message.content.get("network_data", [])
time_window = message.content.get("time_window_minutes", 60)
result = await self.detect_intrusions(network_data, time_window, context)
return AgentResponse(
agent_name=self.name,
content={
"intrusion_detection": {
"detection_id": result.detection_id,
"intrusion_detected": result.intrusion_detected,
"threat_level": "high" if result.intrusion_detected else "low",
"confidence": result.confidence_score,
"affected_systems": len(result.affected_systems),
"mitigation_actions": len(result.mitigation_actions)
},
"status": "detection_completed"
},
confidence=result.confidence_score,
metadata={"detection_type": "intrusion", "systems_analyzed": len(network_data)}
)
elif action == "security_audit":
systems = message.content.get("systems", ["all"])
audit_type = message.content.get("audit_type", "comprehensive")
result = await self.perform_security_audit(systems, audit_type, context=context)
return AgentResponse(
agent_name=self.name,
content={
"security_audit": {
"audit_id": result.audit_id,
"security_score": result.security_score,
"vulnerabilities_found": len(result.vulnerabilities_found),
"compliance_average": np.mean(list(result.compliance_status.values())),
"recommendations_count": len(result.recommendations)
},
"status": "audit_completed"
},
confidence=0.95,
metadata={"audit_duration": (result.end_time - result.start_time).total_seconds()}
)
elif action == "monitor_behavior":
activities = message.content.get("user_activities", [])
security_events = await self.monitor_user_behavior(activities, context)
return AgentResponse(
agent_name=self.name,
content={
"behavior_monitoring": {
"activities_analyzed": len(activities),
"security_events": len(security_events),
"high_risk_events": len([e for e in security_events if e.threat_level in [SecurityThreatLevel.HIGH, SecurityThreatLevel.CRITICAL]])
},
"status": "monitoring_completed"
},
confidence=0.88
)
elif action == "compliance_check":
framework = ComplianceFramework(message.content.get("framework"))
systems = message.content.get("systems", ["all"])
report = await self.generate_compliance_report(framework, systems, context)
return AgentResponse(
agent_name=self.name,
content={"compliance_report": report, "status": "compliance_checked"},
confidence=0.92
)
return AgentResponse(
agent_name=self.name,
content={"error": "Unknown security action"},
confidence=0.0
)
except Exception as e:
self.logger.error(f"Error in security operations: {str(e)}")
raise AgentExecutionError(f"Security operation failed: {str(e)}")
async def _signature_based_detection(self, network_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Detecção baseada em assinaturas conhecidas."""
# TODO: Implementar matching com threat intelligence
return []
async def _behavioral_analysis(self, network_data: List[Dict[str, Any]], time_window: int) -> List[Dict[str, Any]]:
"""Análise comportamental para detecção de anomalias."""
# TODO: Implementar ML models para anomaly detection
return []
async def _correlate_security_events(self, signatures: List, anomalies: List) -> List[Dict[str, Any]]:
"""Correlaciona eventos de segurança."""
# TODO: Implementar Complex Event Processing (CEP)
return signatures + anomalies
async def _calculate_detection_confidence(self, events: List[Dict[str, Any]]) -> float:
"""Calcula confiança na detecção."""
if not events:
return 0.0
# TODO: Implementar cálculo baseado em múltiplos fatores
return min(len(events) * 0.3, 1.0) # Placeholder
async def _identify_attack_patterns(self, events: List[Dict[str, Any]]) -> List[str]:
"""Identifica padrões de ataque."""
# TODO: Implementar MITRE ATT&CK framework mapping
return ["reconnaissance", "initial_access"] # Placeholder
async def _identify_affected_systems(self, events: List[Dict[str, Any]]) -> List[str]:
"""Identifica sistemas afetados."""
return ["web_server", "database"] # Placeholder
async def _reconstruct_attack_timeline(self, events: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Reconstrói timeline do ataque."""
timeline = []
for i, event in enumerate(events):
timeline.append({
"sequence": i + 1,
"timestamp": datetime.utcnow().isoformat(),
"action": "suspicious_activity_detected",
"details": event
})
return timeline
async def _generate_mitigation_actions(self, events: List[Dict[str, Any]]) -> List[str]:
"""Gera ações de mitigação."""
actions = [
"Block suspicious IP addresses",
"Increase monitoring sensitivity",
"Verify user credentials",
"Backup critical data"
]
return actions[:len(events)] # Placeholder
async def _scan_vulnerabilities(self, systems: List[str]) -> List[Dict[str, Any]]:
"""Escaneia vulnerabilidades nos sistemas."""
# TODO: Implementar vulnerability scanning
return [
{
"cve_id": "CVE-2023-1234",
"severity": "medium",
"system": "web_server",
"description": "Example vulnerability"
}
] # Placeholder
async def _check_compliance(self, framework: ComplianceFramework, systems: List[str]) -> float:
"""Verifica compliance com framework."""
# TODO: Implementar verificação específica por framework
return 0.85 # Placeholder (85% compliance)
async def _calculate_security_score(self, vulnerabilities: List, compliance_status: Dict) -> float:
"""Calcula score geral de segurança."""
vuln_penalty = len(vulnerabilities) * 0.05
compliance_bonus = np.mean(list(compliance_status.values())) if compliance_status else 0.5
return max(0.0, min(1.0, compliance_bonus - vuln_penalty))
async def _generate_security_recommendations(self, vulnerabilities: List, compliance_status: Dict) -> List[str]:
"""Gera recomendações de segurança."""
recommendations = []
if vulnerabilities:
recommendations.append("Patch critical vulnerabilities immediately")
for framework, score in compliance_status.items():
if score < 0.9:
recommendations.append(f"Improve {framework.value} compliance")
return recommendations
async def _calculate_user_risk_score(self, activity: Dict[str, Any]) -> float:
"""Calcula score de risco para atividade de usuário."""
# TODO: Implementar scoring baseado em múltiplas variáveis
# - Time of access
# - Location
# - Resource sensitivity
# - User behavior history
return 0.3 # Placeholder
def _determine_threat_level(self, risk_score: float) -> SecurityThreatLevel:
"""Determina nível de ameaça baseado no score."""
if risk_score >= 0.9:
return SecurityThreatLevel.CRITICAL
elif risk_score >= 0.7:
return SecurityThreatLevel.HIGH
elif risk_score >= 0.5:
return SecurityThreatLevel.MEDIUM
elif risk_score >= 0.3:
return SecurityThreatLevel.LOW
else:
return SecurityThreatLevel.MINIMAL
async def _load_threat_intelligence(self) -> None:
"""Carrega feeds de threat intelligence."""
# TODO: Integrar com feeds externos
pass
async def _setup_security_baselines(self) -> None:
"""Configura baselines de segurança."""
# TODO: Estabelecer baselines por sistema
pass
async def _setup_monitoring_rules(self) -> None:
"""Configura regras de monitoramento."""
# TODO: Carregar regras de detecção
pass
async def _setup_compliance_frameworks(self) -> None:
"""Configura frameworks de compliance."""
# TODO: Configurar verificações específicas
pass |