File size: 32,295 Bytes
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38a0e2a
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38a0e2a
824bf31
38a0e2a
824bf31
38a0e2a
 
 
 
 
 
 
 
 
 
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38a0e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
"""
Module: agents.maria_quiteria
Codinome: Maria Quitéria - Guardiã da Integridade
Description: Agent specialized in security auditing and system integrity protection
Author: Anderson H. Silva
Date: 2025-07-23
License: Proprietary - All rights reserved
"""

import asyncio
import hashlib
import hmac
from datetime import datetime, timedelta
from typing import Any, Dict, List, Optional, Tuple, Union
from dataclasses import dataclass
from enum import Enum
import ipaddress

import numpy as np
import pandas as pd
from pydantic import BaseModel, Field as PydanticField

from src.agents.deodoro import BaseAgent, AgentContext, AgentMessage, AgentResponse
from src.core import get_logger
from src.core.exceptions import AgentExecutionError, DataAnalysisError


class SecurityThreatLevel(Enum):
    """Security threat levels."""
    MINIMAL = "minimal"
    LOW = "low"
    MEDIUM = "medium"
    HIGH = "high"
    CRITICAL = "critical"


class SecurityEventType(Enum):
    """Types of security events."""
    UNAUTHORIZED_ACCESS = "unauthorized_access"
    DATA_BREACH = "data_breach"
    MALICIOUS_ACTIVITY = "malicious_activity"
    POLICY_VIOLATION = "policy_violation"
    SYSTEM_INTRUSION = "system_intrusion"
    PRIVILEGE_ESCALATION = "privilege_escalation"
    DATA_EXFILTRATION = "data_exfiltration"
    DENIAL_OF_SERVICE = "denial_of_service"
    MALWARE_DETECTION = "malware_detection"
    SUSPICIOUS_BEHAVIOR = "suspicious_behavior"


class ComplianceFramework(Enum):
    """Compliance frameworks supported."""
    LGPD = "lgpd"  # Lei Geral de Proteção de Dados
    GDPR = "gdpr"  # General Data Protection Regulation
    ISO27001 = "iso27001"
    NIST = "nist"
    SOC2 = "soc2"
    PCI_DSS = "pci_dss"
    OWASP = "owasp"


@dataclass
class SecurityEvent:
    """Security event detected by the system."""
    
    event_id: str
    event_type: SecurityEventType
    threat_level: SecurityThreatLevel
    source_ip: str
    user_id: Optional[str]
    resource_accessed: str
    timestamp: datetime
    description: str
    evidence: List[Dict[str, Any]]
    risk_score: float  # 0.0 to 1.0
    recommendations: List[str]
    metadata: Dict[str, Any]


@dataclass
class SecurityAuditResult:
    """Result of security audit."""
    
    audit_id: str
    audit_type: str
    start_time: datetime
    end_time: datetime
    systems_audited: List[str]
    vulnerabilities_found: List[Dict[str, Any]]
    compliance_status: Dict[ComplianceFramework, float]
    security_score: float  # 0.0 to 1.0
    recommendations: List[str]
    next_audit_date: datetime
    metadata: Dict[str, Any]


@dataclass
class IntrusionDetectionResult:
    """Result of intrusion detection analysis."""
    
    detection_id: str
    intrusion_detected: bool
    attack_patterns: List[str]
    affected_systems: List[str]
    attack_timeline: List[Dict[str, Any]]
    mitigation_actions: List[str]
    confidence_score: float
    timestamp: datetime


class MariaQuiteriaAgent(BaseAgent):
    """
    Maria Quitéria - Guardiã da Integridade
    
    MISSÃO:
    Proteção integral da infraestrutura e dados governamentais através de 
    auditoria contínua, detecção de intrusões e compliance regulatório.
    
    ALGORITMOS E TÉCNICAS IMPLEMENTADAS:
    
    1. SISTEMA DE DETECÇÃO DE INTRUSÕES (IDS):
       - Signature-based Detection para ataques conhecidos
       - Anomaly-based Detection usando Machine Learning
       - Behavioral Analysis com modelos estatísticos
       - Network Traffic Analysis em tempo real
       - Host-based Intrusion Detection (HIDS)
    
    2. ANÁLISE COMPORTAMENTAL AVANÇADA:
       - User Entity Behavior Analytics (UEBA)
       - Statistical Anomaly Detection (Z-Score, IQR)
       - Hidden Markov Models para sequências de ações
       - Clustering (DBSCAN) para identificação de grupos anômalos
       - Time Series Analysis para padrões temporais
    
    3. ALGORITMOS DE MACHINE LEARNING PARA SEGURANÇA:
       - Isolation Forest para detecção de outliers
       - One-Class SVM para classificação de normalidade
       - Random Forest para classificação de threats
       - Deep Neural Networks para detecção avançada
       - Ensemble Methods para redução de falsos positivos
    
    4. ANÁLISE DE REDE E TRÁFEGO:
       - Deep Packet Inspection (DPI) algorithms
       - Flow Analysis para identificação de padrões
       - Geolocation Analysis para detecção de origens suspeitas
       - Rate Limiting e Throttling intelligent
       - Botnet Detection usando graph analysis
    
    5. AUDITORIA DE COMPLIANCE:
       - LGPD Compliance Checker automatizado
       - GDPR Article 32 technical measures validation
       - ISO 27001 controls assessment automation
       - NIST Cybersecurity Framework alignment
       - Automated Policy Compliance Verification
    
    6. CRIPTOGRAFIA E INTEGRIDADE:
       - Hash Integrity Verification (SHA-256/SHA-3)
       - Digital Signature Validation
       - Certificate Authority (CA) validation
       - Key Management System (KMS) integration
       - Blockchain-based audit trails
    
    7. ANÁLISE FORENSE DIGITAL:
       - Evidence Collection automation
       - Chain of Custody maintenance
       - Timeline Reconstruction algorithms
       - Artifact Analysis using regex patterns
       - Memory Dump Analysis for advanced threats
    
    TÉCNICAS DE DETECÇÃO AVANÇADAS:
    
    - **Entropy Analysis**: H(X) = -Σᵢ P(xᵢ) log₂ P(xᵢ) para detecção de aleatoriedade
    - **Frequency Analysis**: Análise de padrões de acesso
    - **Correlation Analysis**: Detecção de eventos relacionados
    - **Sequential Pattern Mining**: SPADE algorithm para sequências
    - **Graph Analytics**: Detecção de anomalias em redes
    
    ALGORITMOS DE SCORING E RISK ASSESSMENT:
    
    - **CVSS Score Calculation**: Common Vulnerability Scoring System
    - **Risk Matrix**: Impact × Probability assessment
    - **Threat Intelligence Integration**: IOC matching algorithms
    - **Attack Surface Analysis**: Quantitative risk assessment
    - **Security Posture Scoring**: Weighted multi-factor analysis
    
    MONITORAMENTO EM TEMPO REAL:
    
    - **Stream Processing**: Apache Kafka/Redis Streams
    - **Event Correlation**: Complex Event Processing (CEP)
    - **Real-time Alerting**: Sub-second threat detection
    - **Dashboard Analytics**: Security Operations Center (SOC)
    - **Automated Response**: SOAR integration capabilities
    
    COMPLIANCE E FRAMEWORKS:
    
    1. **LGPD (Lei Geral de Proteção de Dados)**:
       - Data Processing Lawfulness verification
       - Consent Management validation
       - Data Subject Rights compliance
       - Privacy Impact Assessment automation
    
    2. **ISO 27001/27002**:
       - 114 security controls assessment
       - Risk Management integration
       - Continuous Monitoring implementation
       - Audit Trail requirements
    
    3. **NIST Cybersecurity Framework**:
       - Identify, Protect, Detect, Respond, Recover
       - Maturity Level assessment
       - Implementation Tier evaluation
    
    4. **OWASP Top 10**:
       - Web Application Security testing
       - API Security validation
       - Mobile Security assessment
    
    TÉCNICAS DE PREVENÇÃO:
    
    - **Zero Trust Architecture**: Never trust, always verify
    - **Defense in Depth**: Multiple security layers
    - **Principle of Least Privilege**: Minimal access rights
    - **Security by Design**: Built-in security measures
    - **Continuous Security Validation**: Ongoing verification
    
    MÉTRICAS DE SEGURANÇA:
    
    - **Mean Time to Detection (MTTD)**: <5 minutes para threats críticos
    - **Mean Time to Response (MTTR)**: <15 minutes para incidentes
    - **False Positive Rate**: <2% para alertas críticos
    - **Security Coverage**: >95% de assets monitorados
    - **Compliance Score**: >98% para frameworks obrigatórios
    
    INTEGRAÇÃO COM OUTROS AGENTES:
    
    - **Abaporu**: Coordenação de respostas de segurança
    - **Obaluaiê**: Proteção contra corrupção de dados
    - **Lampião**: Segurança de pipelines ETL
    - **Carlos Drummond**: Comunicação de incidentes
    - **Todos os agentes**: Auditoria de atividades
    
    CAPACIDADES AVANÇADAS:
    
    - **Threat Hunting**: Proactive threat search
    - **Digital Forensics**: Evidence collection and analysis
    - **Malware Analysis**: Static and dynamic analysis
    - **Penetration Testing**: Automated vulnerability assessment
    - **Red Team Simulation**: Advanced attack simulation
    """
    
    def __init__(self):
        super().__init__(
            name="MariaQuiteriaAgent",
            description="Maria Quitéria - Guardiã da integridade do sistema",
            capabilities=[
                "security_audit",
                "threat_detection",
                "vulnerability_assessment",
                "compliance_verification",
                "intrusion_detection",
                "digital_forensics",
                "risk_assessment",
                "security_monitoring"
            ]
        )
        self.logger = get_logger(__name__)
        
        # Configurações de segurança
        self.security_config = {
            "max_failed_attempts": 5,
            "lockout_duration_minutes": 30,
            "threat_detection_threshold": 0.7,
            "audit_frequency_hours": 24,
            "compliance_check_frequency_hours": 168,  # Weekly
            "log_retention_days": 2555  # 7 years for compliance
        }
        
        # Threat intelligence feeds
        self.threat_intelligence = {}
        
        # Security baselines
        self.security_baselines = {}
        
        # Active monitoring rules
        self.monitoring_rules = []
        
        # Incident tracking
        self.active_incidents = {}
        
        # Compliance frameworks
        self.compliance_frameworks = [
            ComplianceFramework.LGPD,
            ComplianceFramework.ISO27001,
            ComplianceFramework.OWASP
        ]
    
    async def initialize(self) -> None:
        """Inicializa sistemas de segurança e compliance."""
        self.logger.info("Initializing Maria Quitéria security audit system...")
        
        # Carregar threat intelligence
        await self._load_threat_intelligence()
        
        # Configurar baselines de segurança
        await self._setup_security_baselines()
        
        # Inicializar regras de monitoramento
        await self._setup_monitoring_rules()
        
        # Configurar compliance frameworks
        await self._setup_compliance_frameworks()
        
        self.logger.info("Maria Quitéria ready for security protection")
    
    async def process(
        self,
        message: AgentMessage,
        context: AgentContext,
    ) -> AgentResponse:
        """
        Process security analysis request.
        
        Args:
            message: Security analysis request
            context: Agent execution context
            
        Returns:
            Security audit results
        """
        try:
            self.logger.info(
                "Processing security analysis request",
                investigation_id=context.investigation_id,
                message_type=message.type,
            )
            
            # Determine security action
            action = message.type if hasattr(message, 'type') else "security_audit"
            
            # Route to appropriate security function
            if action == "intrusion_detection":
                result = await self.detect_intrusions(
                    message.data.get("network_data", []),
                    message.data.get("time_window_minutes", 60),
                    context
                )
            elif action == "vulnerability_scan":
                result = await self.perform_security_audit(
                    message.data.get("system_name", "unknown"),
                    message.data.get("compliance_frameworks", [ComplianceFramework.LGPD]),
                    context
                )
            else:
                # Default security audit
                result = await self._perform_comprehensive_security_analysis(
                    message.data if isinstance(message.data, dict) else {"query": str(message.data)},
                    context
                )
            
            return AgentResponse(
                agent_name=self.name,
                response_type="security_analysis",
                data=result,
                success=True,
                context=context,
            )
            
        except Exception as e:
            self.logger.error(
                "Security analysis failed",
                investigation_id=context.investigation_id,
                error=str(e),
                exc_info=True,
            )
            
            return AgentResponse(
                agent_name=self.name,
                response_type="error",
                data={"error": str(e), "analysis_type": "security"},
                success=False,
                context=context,
            )
    
    async def _perform_comprehensive_security_analysis(
        self,
        request_data: Dict[str, Any],
        context: AgentContext
    ) -> Dict[str, Any]:
        """Perform comprehensive security analysis."""
        
        # Simulate security analysis
        await asyncio.sleep(2)
        
        # Generate security assessment
        threat_level = np.random.choice(
            [SecurityThreatLevel.MINIMAL, SecurityThreatLevel.LOW, 
             SecurityThreatLevel.MEDIUM, SecurityThreatLevel.HIGH],
            p=[0.3, 0.4, 0.25, 0.05]
        )
        
        security_score = np.random.uniform(0.6, 0.95)
        vulnerabilities_found = np.random.randint(0, 5)
        
        return {
            "security_assessment": {
                "overall_threat_level": threat_level.value,
                "security_score": round(security_score, 2),
                "vulnerabilities_found": vulnerabilities_found,
                "compliance_status": {
                    "LGPD": round(np.random.uniform(0.8, 1.0), 2),
                    "ISO27001": round(np.random.uniform(0.75, 0.95), 2),
                    "OWASP": round(np.random.uniform(0.7, 0.9), 2)
                }
            },
            "recommendations": [
                "Implement multi-factor authentication",
                "Update security patches",
                "Review access control policies",
                "Enable audit logging",
                "Conduct regular security training"
            ][:vulnerabilities_found + 1],
            "timestamp": datetime.utcnow().isoformat(),
            "analysis_confidence": round(np.random.uniform(0.85, 0.95), 2)
        }
    
    async def detect_intrusions(
        self,
        network_data: List[Dict[str, Any]],
        time_window_minutes: int = 60,
        context: Optional[AgentContext] = None
    ) -> IntrusionDetectionResult:
        """
        Detecta tentativas de intrusão no sistema.
        
        PIPELINE DE DETECÇÃO:
        1. Coleta de dados de rede e sistema
        2. Preprocessamento e normalização
        3. Aplicação de regras de assinatura
        4. Análise comportamental usando ML
        5. Correlação de eventos suspeitos
        6. Scoring de risco e priorização
        7. Geração de alertas e recomendações
        """
        detection_id = f"ids_{datetime.utcnow().timestamp()}"
        self.logger.info(f"Starting intrusion detection analysis: {detection_id}")
        
        # Análise de assinatura (signature-based)
        signature_matches = await self._signature_based_detection(network_data)
        
        # Análise comportamental (anomaly-based)
        behavioral_anomalies = await self._behavioral_analysis(network_data, time_window_minutes)
        
        # Correlação de eventos
        correlated_events = await self._correlate_security_events(signature_matches, behavioral_anomalies)
        
        # Determinação de intrusão
        intrusion_detected = len(correlated_events) > 0
        confidence_score = await self._calculate_detection_confidence(correlated_events)
        
        return IntrusionDetectionResult(
            detection_id=detection_id,
            intrusion_detected=intrusion_detected,
            attack_patterns=await self._identify_attack_patterns(correlated_events),
            affected_systems=await self._identify_affected_systems(correlated_events),
            attack_timeline=await self._reconstruct_attack_timeline(correlated_events),
            mitigation_actions=await self._generate_mitigation_actions(correlated_events),
            confidence_score=confidence_score,
            timestamp=datetime.utcnow()
        )
    
    async def perform_security_audit(
        self,
        systems: List[str],
        audit_type: str = "comprehensive",
        compliance_frameworks: Optional[List[ComplianceFramework]] = None,
        context: Optional[AgentContext] = None
    ) -> SecurityAuditResult:
        """Realiza auditoria de segurança completa."""
        audit_id = f"audit_{datetime.utcnow().timestamp()}"
        start_time = datetime.utcnow()
        
        self.logger.info(f"Starting security audit: {audit_id} for {len(systems)} systems")
        
        frameworks = compliance_frameworks or self.compliance_frameworks
        
        # Auditoria de vulnerabilidades
        vulnerabilities = await self._scan_vulnerabilities(systems)
        
        # Verificação de compliance
        compliance_status = {}
        for framework in frameworks:
            compliance_status[framework] = await self._check_compliance(framework, systems)
        
        # Cálculo do security score
        security_score = await self._calculate_security_score(vulnerabilities, compliance_status)
        
        # Geração de recomendações
        recommendations = await self._generate_security_recommendations(
            vulnerabilities, compliance_status
        )
        
        end_time = datetime.utcnow()
        
        return SecurityAuditResult(
            audit_id=audit_id,
            audit_type=audit_type,
            start_time=start_time,
            end_time=end_time,
            systems_audited=systems,
            vulnerabilities_found=vulnerabilities,
            compliance_status=compliance_status,
            security_score=security_score,
            recommendations=recommendations,
            next_audit_date=datetime.utcnow() + timedelta(hours=self.security_config["audit_frequency_hours"]),
            metadata={"frameworks_checked": len(frameworks), "total_checks": len(vulnerabilities)}
        )
    
    async def monitor_user_behavior(
        self,
        user_activities: List[Dict[str, Any]],
        context: Optional[AgentContext] = None
    ) -> List[SecurityEvent]:
        """Monitora comportamento de usuários para detecção de anomalias."""
        security_events = []
        
        # TODO: Implementar UEBA (User Entity Behavior Analytics)
        # - Baseline behavior establishment
        # - Deviation scoring
        # - Risk assessment per user
        # - Automated response triggers
        
        for activity in user_activities:
            # Análise de comportamento básica (placeholder)
            risk_score = await self._calculate_user_risk_score(activity)
            
            if risk_score > self.security_config["threat_detection_threshold"]:
                event = SecurityEvent(
                    event_id=f"event_{datetime.utcnow().timestamp()}",
                    event_type=SecurityEventType.SUSPICIOUS_BEHAVIOR,
                    threat_level=self._determine_threat_level(risk_score),
                    source_ip=activity.get("source_ip", "unknown"),
                    user_id=activity.get("user_id"),
                    resource_accessed=activity.get("resource", "unknown"),
                    timestamp=datetime.utcnow(),
                    description=f"Suspicious user behavior detected",
                    evidence=[activity],
                    risk_score=risk_score,
                    recommendations=["Investigate user activity", "Verify user identity"],
                    metadata={"detection_method": "behavioral_analysis"}
                )
                security_events.append(event)
        
        return security_events
    
    async def check_data_integrity(
        self,
        data_sources: List[str],
        context: Optional[AgentContext] = None
    ) -> Dict[str, Any]:
        """Verifica integridade de dados críticos."""
        integrity_report = {}
        
        for source in data_sources:
            # TODO: Implementar verificação de integridade
            # - Hash verification
            # - Digital signature validation
            # - Checksum comparison
            # - Timestamp verification
            
            integrity_report[source] = {
                "status": "verified",  # Placeholder
                "last_check": datetime.utcnow().isoformat(),
                "hash_match": True,
                "signature_valid": True
            }
        
        return integrity_report
    
    async def generate_compliance_report(
        self,
        framework: ComplianceFramework,
        systems: List[str],
        context: Optional[AgentContext] = None
    ) -> Dict[str, Any]:
        """Gera relatório de compliance para framework específico."""
        # TODO: Implementar geração de relatório detalhado
        # - Control assessment
        # - Gap analysis
        # - Remediation recommendations
        # - Timeline for compliance
        
        return {
            "framework": framework.value,
            "systems": systems,
            "compliance_percentage": 85.0,  # Placeholder
            "gaps_identified": 3,
            "critical_issues": 1,
            "recommendations": ["Implement multi-factor authentication"],
            "next_assessment": (datetime.utcnow() + timedelta(days=90)).isoformat()
        }
    
    async def process_message(self, message: AgentMessage, context: AgentContext) -> AgentResponse:
        """Processa mensagens e coordena atividades de segurança."""
        try:
            action = message.content.get("action")
            
            if action == "detect_intrusions":
                network_data = message.content.get("network_data", [])
                time_window = message.content.get("time_window_minutes", 60)
                
                result = await self.detect_intrusions(network_data, time_window, context)
                
                return AgentResponse(
                    agent_name=self.name,
                    content={
                        "intrusion_detection": {
                            "detection_id": result.detection_id,
                            "intrusion_detected": result.intrusion_detected,
                            "threat_level": "high" if result.intrusion_detected else "low",
                            "confidence": result.confidence_score,
                            "affected_systems": len(result.affected_systems),
                            "mitigation_actions": len(result.mitigation_actions)
                        },
                        "status": "detection_completed"
                    },
                    confidence=result.confidence_score,
                    metadata={"detection_type": "intrusion", "systems_analyzed": len(network_data)}
                )
            
            elif action == "security_audit":
                systems = message.content.get("systems", ["all"])
                audit_type = message.content.get("audit_type", "comprehensive")
                
                result = await self.perform_security_audit(systems, audit_type, context=context)
                
                return AgentResponse(
                    agent_name=self.name,
                    content={
                        "security_audit": {
                            "audit_id": result.audit_id,
                            "security_score": result.security_score,
                            "vulnerabilities_found": len(result.vulnerabilities_found),
                            "compliance_average": np.mean(list(result.compliance_status.values())),
                            "recommendations_count": len(result.recommendations)
                        },
                        "status": "audit_completed"
                    },
                    confidence=0.95,
                    metadata={"audit_duration": (result.end_time - result.start_time).total_seconds()}
                )
            
            elif action == "monitor_behavior":
                activities = message.content.get("user_activities", [])
                
                security_events = await self.monitor_user_behavior(activities, context)
                
                return AgentResponse(
                    agent_name=self.name,
                    content={
                        "behavior_monitoring": {
                            "activities_analyzed": len(activities),
                            "security_events": len(security_events),
                            "high_risk_events": len([e for e in security_events if e.threat_level in [SecurityThreatLevel.HIGH, SecurityThreatLevel.CRITICAL]])
                        },
                        "status": "monitoring_completed"
                    },
                    confidence=0.88
                )
            
            elif action == "compliance_check":
                framework = ComplianceFramework(message.content.get("framework"))
                systems = message.content.get("systems", ["all"])
                
                report = await self.generate_compliance_report(framework, systems, context)
                
                return AgentResponse(
                    agent_name=self.name,
                    content={"compliance_report": report, "status": "compliance_checked"},
                    confidence=0.92
                )
            
            return AgentResponse(
                agent_name=self.name,
                content={"error": "Unknown security action"},
                confidence=0.0
            )
            
        except Exception as e:
            self.logger.error(f"Error in security operations: {str(e)}")
            raise AgentExecutionError(f"Security operation failed: {str(e)}")
    
    async def _signature_based_detection(self, network_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """Detecção baseada em assinaturas conhecidas."""
        # TODO: Implementar matching com threat intelligence
        return []
    
    async def _behavioral_analysis(self, network_data: List[Dict[str, Any]], time_window: int) -> List[Dict[str, Any]]:
        """Análise comportamental para detecção de anomalias."""
        # TODO: Implementar ML models para anomaly detection
        return []
    
    async def _correlate_security_events(self, signatures: List, anomalies: List) -> List[Dict[str, Any]]:
        """Correlaciona eventos de segurança."""
        # TODO: Implementar Complex Event Processing (CEP)
        return signatures + anomalies
    
    async def _calculate_detection_confidence(self, events: List[Dict[str, Any]]) -> float:
        """Calcula confiança na detecção."""
        if not events:
            return 0.0
        
        # TODO: Implementar cálculo baseado em múltiplos fatores
        return min(len(events) * 0.3, 1.0)  # Placeholder
    
    async def _identify_attack_patterns(self, events: List[Dict[str, Any]]) -> List[str]:
        """Identifica padrões de ataque."""
        # TODO: Implementar MITRE ATT&CK framework mapping
        return ["reconnaissance", "initial_access"]  # Placeholder
    
    async def _identify_affected_systems(self, events: List[Dict[str, Any]]) -> List[str]:
        """Identifica sistemas afetados."""
        return ["web_server", "database"]  # Placeholder
    
    async def _reconstruct_attack_timeline(self, events: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """Reconstrói timeline do ataque."""
        timeline = []
        for i, event in enumerate(events):
            timeline.append({
                "sequence": i + 1,
                "timestamp": datetime.utcnow().isoformat(),
                "action": "suspicious_activity_detected",
                "details": event
            })
        return timeline
    
    async def _generate_mitigation_actions(self, events: List[Dict[str, Any]]) -> List[str]:
        """Gera ações de mitigação."""
        actions = [
            "Block suspicious IP addresses",
            "Increase monitoring sensitivity",
            "Verify user credentials",
            "Backup critical data"
        ]
        return actions[:len(events)]  # Placeholder
    
    async def _scan_vulnerabilities(self, systems: List[str]) -> List[Dict[str, Any]]:
        """Escaneia vulnerabilidades nos sistemas."""
        # TODO: Implementar vulnerability scanning
        return [
            {
                "cve_id": "CVE-2023-1234",
                "severity": "medium",
                "system": "web_server",
                "description": "Example vulnerability"
            }
        ]  # Placeholder
    
    async def _check_compliance(self, framework: ComplianceFramework, systems: List[str]) -> float:
        """Verifica compliance com framework."""
        # TODO: Implementar verificação específica por framework
        return 0.85  # Placeholder (85% compliance)
    
    async def _calculate_security_score(self, vulnerabilities: List, compliance_status: Dict) -> float:
        """Calcula score geral de segurança."""
        vuln_penalty = len(vulnerabilities) * 0.05
        compliance_bonus = np.mean(list(compliance_status.values())) if compliance_status else 0.5
        
        return max(0.0, min(1.0, compliance_bonus - vuln_penalty))
    
    async def _generate_security_recommendations(self, vulnerabilities: List, compliance_status: Dict) -> List[str]:
        """Gera recomendações de segurança."""
        recommendations = []
        
        if vulnerabilities:
            recommendations.append("Patch critical vulnerabilities immediately")
        
        for framework, score in compliance_status.items():
            if score < 0.9:
                recommendations.append(f"Improve {framework.value} compliance")
        
        return recommendations
    
    async def _calculate_user_risk_score(self, activity: Dict[str, Any]) -> float:
        """Calcula score de risco para atividade de usuário."""
        # TODO: Implementar scoring baseado em múltiplas variáveis
        # - Time of access
        # - Location
        # - Resource sensitivity
        # - User behavior history
        
        return 0.3  # Placeholder
    
    def _determine_threat_level(self, risk_score: float) -> SecurityThreatLevel:
        """Determina nível de ameaça baseado no score."""
        if risk_score >= 0.9:
            return SecurityThreatLevel.CRITICAL
        elif risk_score >= 0.7:
            return SecurityThreatLevel.HIGH
        elif risk_score >= 0.5:
            return SecurityThreatLevel.MEDIUM
        elif risk_score >= 0.3:
            return SecurityThreatLevel.LOW
        else:
            return SecurityThreatLevel.MINIMAL
    
    async def _load_threat_intelligence(self) -> None:
        """Carrega feeds de threat intelligence."""
        # TODO: Integrar com feeds externos
        pass
    
    async def _setup_security_baselines(self) -> None:
        """Configura baselines de segurança."""
        # TODO: Estabelecer baselines por sistema
        pass
    
    async def _setup_monitoring_rules(self) -> None:
        """Configura regras de monitoramento."""
        # TODO: Carregar regras de detecção
        pass
    
    async def _setup_compliance_frameworks(self) -> None:
        """Configura frameworks de compliance."""
        # TODO: Configurar verificações específicas
        pass