File size: 10,941 Bytes
138f7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3177117
138f7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
Module: infrastructure.queue.tasks.investigation_tasks
Description: Celery tasks for investigation processing
Author: Anderson H. Silva
Date: 2025-01-25
License: Proprietary - All rights reserved
"""

from typing import Dict, Any, List, Optional
from datetime import datetime
import asyncio

from celery import group, chain
from celery.utils.log import get_task_logger

from src.infrastructure.queue.celery_app import celery_app, priority_task, TaskPriority
from src.services.investigation_service_selector import investigation_service as InvestigationService
from src.services.data_service import DataService
from src.core.dependencies import get_db_session
from src.agents import get_agent_pool

logger = get_task_logger(__name__)


@celery_app.task(name="tasks.run_investigation", bind=True, queue="high")
def run_investigation(
    self,
    investigation_id: str,
    query: str,
    config: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
    """
    Run a complete investigation asynchronously.
    
    Args:
        investigation_id: Unique investigation ID
        query: Investigation query
        config: Optional investigation configuration
        
    Returns:
        Investigation results
    """
    try:
        logger.info(
            "investigation_started",
            investigation_id=investigation_id,
            query=query[:100]
        )
        
        # Run async investigation in sync context
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        
        try:
            result = loop.run_until_complete(
                _run_investigation_async(investigation_id, query, config)
            )
            
            logger.info(
                "investigation_completed",
                investigation_id=investigation_id,
                findings_count=len(result.get("findings", []))
            )
            
            return result
            
        finally:
            loop.close()
    
    except Exception as e:
        logger.error(
            "investigation_failed",
            investigation_id=investigation_id,
            error=str(e),
            exc_info=True
        )
        
        # Retry with exponential backoff
        raise self.retry(
            exc=e,
            countdown=60 * (2 ** self.request.retries),
            max_retries=3
        )


async def _run_investigation_async(
    investigation_id: str,
    query: str,
    config: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
    """Async implementation of investigation."""
    async with get_db_session() as db:
        investigation_service = InvestigationService(db)
        agent_pool = get_agent_pool()
        
        # Create investigation
        investigation = await investigation_service.create(
            query=query,
            context=config or {},
            initiated_by="celery_task"
        )
        
        # Run investigation with agents
        result = await investigation_service.run_investigation(
            investigation_id=investigation.id,
            agent_pool=agent_pool
        )
        
        return result.dict()


@celery_app.task(name="tasks.analyze_contracts_batch", queue="normal")
def analyze_contracts_batch(
    contract_ids: List[str],
    analysis_type: str = "anomaly",
    threshold: float = 0.7
) -> Dict[str, Any]:
    """
    Analyze multiple contracts in batch.
    
    Args:
        contract_ids: List of contract IDs to analyze
        analysis_type: Type of analysis (anomaly, compliance, value)
        threshold: Detection threshold
        
    Returns:
        Batch analysis results
    """
    logger.info(
        "batch_analysis_started",
        contract_count=len(contract_ids),
        analysis_type=analysis_type
    )
    
    # Create subtasks for each contract
    tasks = []
    for contract_id in contract_ids:
        task = analyze_single_contract.s(
            contract_id=contract_id,
            analysis_type=analysis_type,
            threshold=threshold
        )
        tasks.append(task)
    
    # Execute tasks in parallel
    job = group(tasks)
    results = job.apply_async()
    
    # Wait for results
    contract_results = results.get(timeout=300)  # 5 minutes timeout
    
    # Aggregate results
    summary = {
        "total_contracts": len(contract_ids),
        "analyzed": len(contract_results),
        "anomalies_found": sum(1 for r in contract_results if r.get("has_anomaly", False)),
        "analysis_type": analysis_type,
        "threshold": threshold,
        "results": contract_results
    }
    
    logger.info(
        "batch_analysis_completed",
        total=summary["total_contracts"],
        anomalies=summary["anomalies_found"]
    )
    
    return summary


@celery_app.task(name="tasks.analyze_single_contract", queue="normal")
def analyze_single_contract(
    contract_id: str,
    analysis_type: str,
    threshold: float
) -> Dict[str, Any]:
    """Analyze a single contract."""
    try:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        
        try:
            result = loop.run_until_complete(
                _analyze_contract_async(contract_id, analysis_type, threshold)
            )
            return result
        finally:
            loop.close()
            
    except Exception as e:
        logger.error(
            "contract_analysis_failed",
            contract_id=contract_id,
            error=str(e)
        )
        return {
            "contract_id": contract_id,
            "error": str(e),
            "has_anomaly": False
        }


async def _analyze_contract_async(
    contract_id: str,
    analysis_type: str,
    threshold: float
) -> Dict[str, Any]:
    """Async contract analysis."""
    async with get_db_session() as db:
        data_service = DataService(db)
        agent_pool = get_agent_pool()
        
        # Get contract data
        contract = await data_service.get_contract(contract_id)
        if not contract:
            return {
                "contract_id": contract_id,
                "error": "Contract not found",
                "has_anomaly": False
            }
        
        # Get Zumbi agent for anomaly detection
        zumbi = agent_pool.get_agent("zumbi")
        if not zumbi:
            return {
                "contract_id": contract_id,
                "error": "Agent not available",
                "has_anomaly": False
            }
        
        # Analyze contract
        analysis = await zumbi.analyze_contract(
            contract,
            threshold=threshold,
            analysis_type=analysis_type
        )
        
        return {
            "contract_id": contract_id,
            "has_anomaly": analysis.anomaly_detected,
            "anomaly_score": analysis.anomaly_score,
            "indicators": analysis.indicators,
            "recommendations": analysis.recommendations
        }


@celery_app.task(name="tasks.detect_anomalies_batch", queue="high")
def detect_anomalies_batch(
    data_source: str,
    time_range: Dict[str, str],
    detection_config: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
    """
    Run batch anomaly detection on data source.
    
    Args:
        data_source: Source of data (contracts, transactions, etc.)
        time_range: Time range for analysis
        detection_config: Detection configuration
        
    Returns:
        Anomaly detection results
    """
    logger.info(
        "anomaly_detection_started",
        data_source=data_source,
        time_range=time_range
    )
    
    try:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        
        try:
            result = loop.run_until_complete(
                _detect_anomalies_async(data_source, time_range, detection_config)
            )
            
            logger.info(
                "anomaly_detection_completed",
                anomalies_found=len(result.get("anomalies", []))
            )
            
            return result
            
        finally:
            loop.close()
            
    except Exception as e:
        logger.error(
            "anomaly_detection_failed",
            error=str(e),
            exc_info=True
        )
        raise


async def _detect_anomalies_async(
    data_source: str,
    time_range: Dict[str, str],
    detection_config: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
    """Async anomaly detection."""
    async with get_db_session() as db:
        data_service = DataService(db)
        agent_pool = get_agent_pool()
        
        # Get data for analysis
        if data_source == "contracts":
            data = await data_service.get_contracts_in_range(
                start_date=time_range.get("start"),
                end_date=time_range.get("end")
            )
        else:
            raise ValueError(f"Unknown data source: {data_source}")
        
        # Get Zumbi agent
        zumbi = agent_pool.get_agent("zumbi")
        if not zumbi:
            raise RuntimeError("Anomaly detection agent not available")
        
        # Run detection
        anomalies = []
        for item in data:
            result = await zumbi.detect_anomalies(
                data=item,
                config=detection_config or {}
            )
            
            if result.anomaly_detected:
                anomalies.append({
                    "id": item.get("id"),
                    "type": result.anomaly_type,
                    "score": result.anomaly_score,
                    "description": result.description,
                    "timestamp": datetime.now().isoformat()
                })
        
        return {
            "data_source": data_source,
            "time_range": time_range,
            "total_analyzed": len(data),
            "anomalies_found": len(anomalies),
            "anomalies": anomalies
        }


@priority_task(priority=TaskPriority.CRITICAL)
def emergency_investigation(
    query: str,
    reason: str,
    initiated_by: str
) -> Dict[str, Any]:
    """
    Run emergency investigation with highest priority.
    
    Args:
        query: Investigation query
        reason: Reason for emergency
        initiated_by: Who initiated the investigation
        
    Returns:
        Investigation results
    """
    logger.warning(
        "emergency_investigation_started",
        query=query[:100],
        reason=reason,
        initiated_by=initiated_by
    )
    
    # Create investigation with special handling
    investigation_id = f"EMERGENCY-{datetime.now().strftime('%Y%m%d%H%M%S')}"
    
    # Run with increased resources
    result = run_investigation.apply_async(
        args=[investigation_id, query],
        kwargs={"config": {"priority": "critical", "reason": reason}},
        priority=10,  # Highest priority
        time_limit=1800,  # 30 minutes
    )
    
    return result.get()