File size: 30,512 Bytes
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
# 🧠 Cidadão.AI Memory System

## 📋 Overview

The **Memory System** implements a sophisticated **multi-layer memory architecture** inspired by human cognitive memory models. This system enables agents to maintain **context**, **learn from experiences**, and **build knowledge** over time, crucial for effective transparency analysis and investigation continuity.

## 🏗️ Architecture

```
src/memory/
├── base.py             # Abstract memory interfaces
├── episodic.py         # Event-specific memory storage
├── semantic.py         # General knowledge and patterns
├── conversational.py   # Dialog context management
└── __init__.py        # Memory system initialization
```

## 🧩 Memory Architecture

### Multi-Layer Memory Model

The system implements **three distinct memory layers** based on cognitive science research:

```python
# Memory hierarchy (cognitive psychology inspired)
┌─────────────────────┐
│ Conversational      │ ← Short-term, session-based
│ Memory              │
├─────────────────────┤
│ Episodic Memory     │ ← Medium-term, event-based
├─────────────────────┤
│ Semantic Memory     │ ← Long-term, knowledge-based
└─────────────────────┘
```

### 1. **Base Memory Framework** (base.py)

#### Abstract Memory Interface
```python
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
from datetime import datetime
from enum import Enum

class MemoryType(Enum):
    """Memory classification types"""
    EPISODIC = "episodic"           # Specific events and experiences
    SEMANTIC = "semantic"           # General knowledge and facts
    PROCEDURAL = "procedural"       # Skills and procedures
    WORKING = "working"             # Temporary, active information

class MemoryImportance(Enum):
    """Memory importance levels for retention management"""
    TRIVIAL = 1      # Can be discarded easily
    LOW = 2          # Moderate retention
    MEDIUM = 3       # Standard retention
    HIGH = 4         # Long retention
    CRITICAL = 5     # Permanent retention

class BaseMemory(ABC):
    """
    Abstract base class for all memory implementations
    
    Core Principles:
    - Importance-based retention
    - Temporal decay with reinforcement
    - Associative retrieval
    - Context-aware storage
    - Efficient search and indexing
    """
    
    def __init__(self, memory_type: MemoryType, max_size: int = 10000):
        self.memory_type = memory_type
        self.max_size = max_size
        self.memories: Dict[str, MemoryEntry] = {}
        self.index = {}  # For fast retrieval
        
    @abstractmethod
    async def store(
        self, 
        key: str, 
        content: Any, 
        importance: MemoryImportance = MemoryImportance.MEDIUM,
        metadata: Dict[str, Any] = None
    ) -> bool:
        """Store memory with importance weighting"""
        pass
        
    @abstractmethod
    async def retrieve(
        self, 
        key: str = None,
        query: str = None,
        similarity_threshold: float = 0.8,
        max_results: int = 10
    ) -> List[MemoryEntry]:
        """Retrieve memories by key or semantic query"""
        pass
        
    @abstractmethod
    async def forget(self, key: str) -> bool:
        """Explicitly remove memory"""
        pass
        
    @abstractmethod
    async def consolidate(self) -> Dict[str, int]:
        """Consolidate memories (move from short to long-term)"""
        pass

class MemoryEntry(BaseModel):
    """Individual memory entry with metadata"""
    
    id: str = Field(..., description="Unique memory identifier")
    content: Any = Field(..., description="Memory content")
    memory_type: MemoryType = Field(..., description="Type of memory")
    importance: MemoryImportance = Field(..., description="Importance level")
    
    # Temporal information
    created_at: datetime = Field(default_factory=datetime.utcnow)
    last_accessed: datetime = Field(default_factory=datetime.utcnow)
    access_count: int = Field(default=0, description="Number of times accessed")
    
    # Context and associations
    context: Dict[str, Any] = Field(default_factory=dict, description="Contextual metadata")
    associations: List[str] = Field(default_factory=list, description="Associated memory IDs")
    tags: List[str] = Field(default_factory=list, description="Searchable tags")
    
    # Decay and reinforcement
    decay_rate: float = Field(default=0.1, description="Memory decay rate (0-1)")
    reinforcement_count: int = Field(default=0, description="Times reinforced")
    strength: float = Field(default=1.0, description="Memory strength (0-1)")
    
    def calculate_current_strength(self) -> float:
        """Calculate current memory strength with decay"""
        time_elapsed = (datetime.utcnow() - self.created_at).total_seconds()
        decay_factor = math.exp(-self.decay_rate * time_elapsed / 86400)  # Per day
        reinforcement_boost = min(0.5, self.reinforcement_count * 0.1)
        
        return min(1.0, (self.strength * decay_factor) + reinforcement_boost)
    
    def reinforce(self) -> None:
        """Reinforce memory (strengthen and reset decay)"""
        self.reinforcement_count += 1
        self.last_accessed = datetime.utcnow()
        self.access_count += 1
        self.strength = min(1.0, self.strength + 0.1)
```

### 2. **Episodic Memory** (episodic.py)

#### Event-Based Memory Storage
```python
class EpisodicMemory(BaseMemory):
    """
    Episodic memory for specific events and experiences
    
    Use Cases:
    - Investigation results and findings
    - Agent interactions and decisions
    - User queries and responses
    - System events and anomalies
    - Analysis outcomes and insights
    
    Features:
    - Temporal ordering and retrieval
    - Context-rich storage
    - Event clustering and patterns
    - Causal relationship tracking
    """
    
    def __init__(self, max_size: int = 5000):
        super().__init__(MemoryType.EPISODIC, max_size)
        self.temporal_index = {}  # Time-based indexing
        self.context_index = {}   # Context-based indexing
        self.event_chains = {}    # Causal event sequences
    
    async def store_investigation_result(
        self,
        investigation_id: str,
        results: Dict[str, Any],
        context: Dict[str, Any] = None
    ) -> bool:
        """Store investigation results as episodic memory"""
        
        memory_entry = MemoryEntry(
            id=f"investigation_{investigation_id}",
            content={
                "investigation_id": investigation_id,
                "results": results,
                "anomalies_found": results.get("anomalies_found", 0),
                "confidence_score": results.get("confidence_score", 0.0),
                "processing_time": results.get("processing_time_ms", 0)
            },
            memory_type=MemoryType.EPISODIC,
            importance=self._calculate_investigation_importance(results),
            context=context or {},
            tags=self._extract_investigation_tags(results)
        )
        
        # Store in main memory
        self.memories[memory_entry.id] = memory_entry
        
        # Update temporal index
        timestamp = memory_entry.created_at.isoformat()
        if timestamp not in self.temporal_index:
            self.temporal_index[timestamp] = []
        self.temporal_index[timestamp].append(memory_entry.id)
        
        # Update context index
        for key, value in memory_entry.context.items():
            context_key = f"{key}:{value}"
            if context_key not in self.context_index:
                self.context_index[context_key] = []
            self.context_index[context_key].append(memory_entry.id)
        
        return True
    
    async def store_agent_interaction(
        self,
        agent_name: str,
        action: str,
        input_data: Dict[str, Any],
        output_data: Dict[str, Any],
        success: bool
    ) -> bool:
        """Store agent interaction as episodic memory"""
        
        memory_entry = MemoryEntry(
            id=f"agent_{agent_name}_{datetime.utcnow().isoformat()}",
            content={
                "agent_name": agent_name,
                "action": action,
                "input_summary": self._summarize_data(input_data),
                "output_summary": self._summarize_data(output_data),
                "success": success,
                "execution_context": self._extract_execution_context()
            },
            memory_type=MemoryType.EPISODIC,
            importance=MemoryImportance.MEDIUM if success else MemoryImportance.HIGH,
            context={"agent": agent_name, "action": action},
            tags=[agent_name, action, "success" if success else "failure"]
        )
        
        await self.store(memory_entry.id, memory_entry.content, memory_entry.importance, memory_entry.context)
        return True
    
    async def retrieve_investigation_history(
        self,
        investigation_id: str = None,
        organization: str = None,
        time_range: Dict[str, datetime] = None,
        max_results: int = 50
    ) -> List[MemoryEntry]:
        """Retrieve investigation history with filtering"""
        
        relevant_memories = []
        
        for memory_id, memory in self.memories.items():
            # Filter by investigation ID
            if investigation_id and investigation_id not in memory.content.get("investigation_id", ""):
                continue
                
            # Filter by organization
            if organization and organization not in memory.context.get("organization", ""):
                continue
                
            # Filter by time range
            if time_range:
                if "start" in time_range and memory.created_at < time_range["start"]:
                    continue
                if "end" in time_range and memory.created_at > time_range["end"]:
                    continue
            
            relevant_memories.append(memory)
        
        # Sort by creation time (most recent first)
        relevant_memories.sort(key=lambda m: m.created_at, reverse=True)
        
        return relevant_memories[:max_results]
    
    async def detect_investigation_patterns(self) -> Dict[str, Any]:
        """Detect patterns in investigation history"""
        
        patterns = {
            "common_anomaly_types": {},
            "organization_patterns": {},
            "temporal_patterns": {},
            "success_patterns": {}
        }
        
        for memory in self.memories.values():
            if "investigation_" in memory.id:
                content = memory.content
                
                # Anomaly type patterns
                anomaly_types = content.get("results", {}).get("anomaly_types", [])
                for anomaly_type in anomaly_types:
                    patterns["common_anomaly_types"][anomaly_type] = patterns["common_anomaly_types"].get(anomaly_type, 0) + 1
                
                # Organization patterns
                org = memory.context.get("organization", "unknown")
                patterns["organization_patterns"][org] = patterns["organization_patterns"].get(org, 0) + 1
                
                # Temporal patterns (by hour of day)
                hour = memory.created_at.hour
                patterns["temporal_patterns"][hour] = patterns["temporal_patterns"].get(hour, 0) + 1
                
                # Success patterns
                confidence = content.get("confidence_score", 0.0)
                if confidence > 0.8:
                    patterns["success_patterns"]["high_confidence"] = patterns["success_patterns"].get("high_confidence", 0) + 1
                elif confidence > 0.6:
                    patterns["success_patterns"]["medium_confidence"] = patterns["success_patterns"].get("medium_confidence", 0) + 1
                else:
                    patterns["success_patterns"]["low_confidence"] = patterns["success_patterns"].get("low_confidence", 0) + 1
        
        return patterns
```

### 3. **Semantic Memory** (semantic.py)

#### Knowledge and Pattern Storage
```python
class SemanticMemory(BaseMemory):
    """
    Semantic memory for general knowledge and learned patterns
    
    Use Cases:
    - Government organization profiles
    - Vendor behavior patterns
    - Legal framework knowledge
    - Statistical benchmarks
    - Domain expertise
    
    Features:
    - Vector-based semantic search
    - Knowledge graph relationships
    - Pattern abstraction
    - Automated knowledge extraction
    """
    
    def __init__(self, max_size: int = 20000):
        super().__init__(MemoryType.SEMANTIC, max_size)
        self.vector_store = None  # ChromaDB or FAISS
        self.knowledge_graph = {}  # Entity relationships
        self.concept_hierarchy = {}  # Taxonomic organization
        
    async def store_organization_profile(
        self,
        organization_code: str,
        profile_data: Dict[str, Any]
    ) -> bool:
        """Store government organization profile"""
        
        memory_entry = MemoryEntry(
            id=f"org_profile_{organization_code}",
            content={
                "organization_code": organization_code,
                "name": profile_data.get("name", ""),
                "type": profile_data.get("type", ""),
                "budget_range": profile_data.get("budget_range", ""),
                "typical_contracts": profile_data.get("typical_contracts", []),
                "spending_patterns": profile_data.get("spending_patterns", {}),
                "risk_profile": profile_data.get("risk_profile", "medium"),
                "compliance_history": profile_data.get("compliance_history", [])
            },
            memory_type=MemoryType.SEMANTIC,
            importance=MemoryImportance.HIGH,
            context={"type": "organization_profile", "code": organization_code},
            tags=["organization", organization_code, profile_data.get("type", "")]
        )
        
        # Store in main memory
        self.memories[memory_entry.id] = memory_entry
        
        # Update knowledge graph
        await self._update_knowledge_graph(memory_entry)
        
        # Store vector representation for semantic search
        if self.vector_store:
            await self._store_vector_representation(memory_entry)
        
        return True
    
    async def store_pattern_knowledge(
        self,
        pattern_type: str,
        pattern_data: Dict[str, Any],
        evidence: List[str] = None
    ) -> bool:
        """Store learned patterns and knowledge"""
        
        memory_entry = MemoryEntry(
            id=f"pattern_{pattern_type}_{datetime.utcnow().timestamp()}",
            content={
                "pattern_type": pattern_type,
                "description": pattern_data.get("description", ""),
                "conditions": pattern_data.get("conditions", []),
                "indicators": pattern_data.get("indicators", []),
                "confidence": pattern_data.get("confidence", 0.0),
                "frequency": pattern_data.get("frequency", 0),
                "evidence": evidence or [],
                "applications": pattern_data.get("applications", [])
            },
            memory_type=MemoryType.SEMANTIC,
            importance=MemoryImportance.HIGH,
            context={"type": "pattern", "pattern_type": pattern_type},
            tags=["pattern", pattern_type] + pattern_data.get("tags", [])
        )
        
        await self.store(memory_entry.id, memory_entry.content, memory_entry.importance, memory_entry.context)
        return True
    
    async def query_similar_patterns(
        self,
        query_pattern: Dict[str, Any],
        similarity_threshold: float = 0.8,
        max_results: int = 10
    ) -> List[MemoryEntry]:
        """Find patterns similar to the query pattern"""
        
        if not self.vector_store:
            # Fallback to keyword-based search
            return await self._keyword_based_pattern_search(query_pattern, max_results)
        
        # Vector-based semantic search
        query_vector = await self._generate_pattern_embedding(query_pattern)
        similar_memories = await self.vector_store.similarity_search(
            query_vector,
            threshold=similarity_threshold,
            max_results=max_results
        )
        
        return similar_memories
    
    async def extract_knowledge_from_investigations(
        self,
        investigation_results: List[Dict[str, Any]]
    ) -> Dict[str, Any]:
        """Extract semantic knowledge from investigation results"""
        
        extracted_knowledge = {
            "organization_insights": {},
            "vendor_patterns": {},
            "anomaly_patterns": {},
            "seasonal_patterns": {},
            "compliance_insights": {}
        }
        
        for result in investigation_results:
            # Extract organization insights
            org_code = result.get("organization_code")
            if org_code:
                if org_code not in extracted_knowledge["organization_insights"]:
                    extracted_knowledge["organization_insights"][org_code] = {
                        "anomaly_frequency": 0,
                        "avg_confidence": 0.0,
                        "common_issues": []
                    }
                
                org_insight = extracted_knowledge["organization_insights"][org_code]
                org_insight["anomaly_frequency"] += result.get("anomalies_found", 0)
                org_insight["avg_confidence"] += result.get("confidence_score", 0.0)
            
            # Extract vendor patterns
            vendors = result.get("vendors", [])
            for vendor in vendors:
                vendor_id = vendor.get("id")
                if vendor_id and vendor.get("anomaly_score", 0) > 0.7:
                    if vendor_id not in extracted_knowledge["vendor_patterns"]:
                        extracted_knowledge["vendor_patterns"][vendor_id] = {
                            "risk_score": 0.0,
                            "issue_types": [],
                            "frequency": 0
                        }
                    
                    pattern = extracted_knowledge["vendor_patterns"][vendor_id]
                    pattern["risk_score"] = max(pattern["risk_score"], vendor.get("anomaly_score", 0))
                    pattern["frequency"] += 1
        
        # Store extracted knowledge
        for category, knowledge in extracted_knowledge.items():
            if knowledge:  # Only store non-empty knowledge
                await self.store_pattern_knowledge(
                    pattern_type=category,
                    pattern_data={"description": f"Extracted {category}", "data": knowledge}
                )
        
        return extracted_knowledge
```

### 4. **Conversational Memory** (conversational.py)

#### Dialog Context Management
```python
class ConversationalMemory(BaseMemory):
    """
    Conversational memory for dialog context and user interactions
    
    Use Cases:
    - User query context and history
    - Multi-turn conversation tracking
    - User preferences and patterns
    - Session state management
    - Personalization data
    
    Features:
    - Session-based organization
    - Context window management
    - Intent tracking
    - Preference learning
    """
    
    def __init__(self, max_size: int = 2000, context_window: int = 20):
        super().__init__(MemoryType.WORKING, max_size)
        self.context_window = context_window
        self.active_sessions = {}
        self.user_profiles = {}
        
    async def store_user_message(
        self,
        user_id: str,
        session_id: str,
        message: str,
        intent: str = None,
        entities: Dict[str, Any] = None
    ) -> bool:
        """Store user message with context"""
        
        message_entry = MemoryEntry(
            id=f"user_msg_{session_id}_{datetime.utcnow().timestamp()}",
            content={
                "user_id": user_id,
                "session_id": session_id,
                "message": message,
                "intent": intent,
                "entities": entities or {},
                "message_type": "user"
            },
            memory_type=MemoryType.WORKING,
            importance=MemoryImportance.MEDIUM,
            context={"user_id": user_id, "session_id": session_id},
            tags=["user_message", intent or "unknown_intent"]
        )
        
        # Store message
        await self.store(message_entry.id, message_entry.content, message_entry.importance, message_entry.context)
        
        # Update session tracking
        await self._update_session_context(session_id, message_entry)
        
        # Update user profile
        await self._update_user_profile(user_id, message_entry)
        
        return True
    
    async def store_agent_response(
        self,
        session_id: str,
        agent_name: str,
        response: str,
        confidence: float = 1.0,
        metadata: Dict[str, Any] = None
    ) -> bool:
        """Store agent response with context"""
        
        response_entry = MemoryEntry(
            id=f"agent_resp_{session_id}_{datetime.utcnow().timestamp()}",
            content={
                "session_id": session_id,
                "agent_name": agent_name,
                "response": response,
                "confidence": confidence,
                "metadata": metadata or {},
                "message_type": "agent"
            },
            memory_type=MemoryType.WORKING,
            importance=MemoryImportance.MEDIUM,
            context={"session_id": session_id, "agent": agent_name},
            tags=["agent_response", agent_name]
        )
        
        await self.store(response_entry.id, response_entry.content, response_entry.importance, response_entry.context)
        await self._update_session_context(session_id, response_entry)
        
        return True
    
    async def get_conversation_context(
        self,
        session_id: str,
        max_messages: int = None
    ) -> List[MemoryEntry]:
        """Get conversation context for a session"""
        
        max_messages = max_messages or self.context_window
        
        session_memories = []
        for memory in self.memories.values():
            if memory.context.get("session_id") == session_id:
                session_memories.append(memory)
        
        # Sort by creation time and limit to context window
        session_memories.sort(key=lambda m: m.created_at)
        return session_memories[-max_messages:]
    
    async def learn_user_preferences(self, user_id: str) -> Dict[str, Any]:
        """Learn user preferences from conversation history"""
        
        user_memories = [
            memory for memory in self.memories.values()
            if memory.context.get("user_id") == user_id
        ]
        
        preferences = {
            "preferred_analysis_types": {},
            "common_organizations": {},
            "typical_queries": [],
            "response_preferences": {
                "detail_level": "medium",
                "format_preference": "natural_language"
            }
        }
        
        for memory in user_memories:
            content = memory.content
            
            # Learn from intents
            if content.get("intent"):
                intent = content["intent"]
                preferences["preferred_analysis_types"][intent] = preferences["preferred_analysis_types"].get(intent, 0) + 1
            
            # Learn from entities
            entities = content.get("entities", {})
            if "organization" in entities:
                org = entities["organization"]
                preferences["common_organizations"][org] = preferences["common_organizations"].get(org, 0) + 1
        
        # Update user profile
        self.user_profiles[user_id] = preferences
        
        return preferences
```

## 🔄 Memory Consolidation & Management

### Automated Memory Management
```python
class MemoryManager:
    """
    Central memory management system
    
    Features:
    - Automatic memory consolidation
    - Importance-based retention
    - Cross-memory association
    - Garbage collection
    - Performance optimization
    """
    
    def __init__(self):
        self.episodic_memory = EpisodicMemory()
        self.semantic_memory = SemanticMemory()
        self.conversational_memory = ConversationalMemory()
        
    async def consolidate_memories(self) -> Dict[str, int]:
        """Consolidate memories across layers"""
        
        consolidation_stats = {
            "episodic_to_semantic": 0,
            "conversational_to_episodic": 0,
            "forgotten_memories": 0
        }
        
        # Promote important episodic memories to semantic
        important_episodes = [
            memory for memory in self.episodic_memory.memories.values()
            if memory.importance.value >= MemoryImportance.HIGH.value
            and memory.reinforcement_count > 3
        ]
        
        for episode in important_episodes:
            # Extract semantic patterns
            semantic_knowledge = await self._extract_semantic_knowledge(episode)
            if semantic_knowledge:
                await self.semantic_memory.store_pattern_knowledge(
                    pattern_type="learned_from_episode",
                    pattern_data=semantic_knowledge,
                    evidence=[episode.id]
                )
                consolidation_stats["episodic_to_semantic"] += 1
        
        # Promote important conversations to episodic
        important_conversations = [
            memory for memory in self.conversational_memory.memories.values()
            if memory.importance.value >= MemoryImportance.HIGH.value
        ]
        
        for conversation in important_conversations:
            await self.episodic_memory.store_agent_interaction(
                agent_name="conversational_agent",
                action="important_conversation",
                input_data={"conversation_id": conversation.id},
                output_data=conversation.content,
                success=True
            )
            consolidation_stats["conversational_to_episodic"] += 1
        
        # Forget low-importance, old memories
        forgotten_count = await self._forget_old_memories()
        consolidation_stats["forgotten_memories"] = forgotten_count
        
        return consolidation_stats
    
    async def _forget_old_memories(self) -> int:
        """Remove low-importance memories based on age and strength"""
        
        forgotten_count = 0
        current_time = datetime.utcnow()
        
        for memory_layer in [self.episodic_memory, self.semantic_memory, self.conversational_memory]:
            memories_to_forget = []
            
            for memory_id, memory in memory_layer.memories.items():
                # Calculate memory strength with decay
                current_strength = memory.calculate_current_strength()
                age_days = (current_time - memory.created_at).days
                
                # Forget if strength is very low and memory is old
                if (current_strength < 0.1 and age_days > 30) or \
                   (memory.importance == MemoryImportance.TRIVIAL and age_days > 7):
                    memories_to_forget.append(memory_id)
            
            # Remove forgotten memories
            for memory_id in memories_to_forget:
                await memory_layer.forget(memory_id)
                forgotten_count += 1
        
        return forgotten_count
```

## 🧪 Usage Examples

### Basic Memory Operations
```python
from src.memory import EpisodicMemory, SemanticMemory, ConversationalMemory

# Initialize memory systems
episodic = EpisodicMemory()
semantic = SemanticMemory()
conversational = ConversationalMemory()

# Store investigation result
investigation_result = {
    "anomalies_found": 5,
    "confidence_score": 0.92,
    "processing_time_ms": 1500
}

await episodic.store_investigation_result(
    investigation_id="inv_001",
    results=investigation_result,
    context={"organization": "20000", "year": "2024"}
)

# Store organization knowledge  
org_profile = {
    "name": "Ministério da Saúde",
    "type": "federal_ministry",
    "budget_range": "50B+",
    "risk_profile": "medium"
}

await semantic.store_organization_profile("20000", org_profile)

# Store conversation
await conversational.store_user_message(
    user_id="user123",
    session_id="session_001", 
    message="Analyze health ministry contracts from 2024",
    intent="analyze_contracts",
    entities={"organization": "20000", "year": "2024"}
)
```

### Advanced Memory Retrieval
```python
# Retrieve investigation history
investigation_history = await episodic.retrieve_investigation_history(
    organization="20000",
    time_range={
        "start": datetime(2024, 1, 1),
        "end": datetime(2024, 12, 31)
    },  
    max_results=20
)

# Find similar patterns
similar_patterns = await semantic.query_similar_patterns(
    query_pattern={
        "pattern_type": "vendor_concentration",
        "conditions": ["high_market_share", "few_competitors"],
        "confidence": 0.8
    },
    similarity_threshold=0.7
)

# Get conversation context
context = await conversational.get_conversation_context(
    session_id="session_001",
    max_messages=10
)
```

### Memory Consolidation
```python
from src.memory import MemoryManager

# Initialize memory manager
memory_manager = MemoryManager()

# Perform memory consolidation  
consolidation_stats = await memory_manager.consolidate_memories()

print(f"Promoted {consolidation_stats['episodic_to_semantic']} episodes to semantic memory")
print(f"Forgot {consolidation_stats['forgotten_memories']} old memories")
```

---

This sophisticated memory system enables the Cidadão.AI agents to **learn from experience**, **maintain context**, and **build knowledge** over time, crucial for effective long-term transparency analysis and investigation continuity.