File size: 20,335 Bytes
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9730fbc
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
"""
Cidadão.AI - Hugging Face Transformers Integration

Modelo especializado em transparência pública brasileira
compatível com a biblioteca transformers do Hugging Face.
"""

import torch
import torch.nn as nn
from transformers import (
    PreTrainedModel, PretrainedConfig,
    AutoModel, AutoTokenizer,
    pipeline, Pipeline
)
from transformers.modeling_outputs import SequenceClassifierOutput, BaseModelOutput
from typing import Optional, Dict, List, Union, Tuple
from src.core import json_utils
import logging
from pathlib import Path

logger = logging.getLogger(__name__)


class CidadaoAIConfig(PretrainedConfig):
    """
    Configuração do Cidadão.AI para Hugging Face
    """
    
    model_type = "cidadao-gpt"
    
    def __init__(
        self,
        vocab_size: int = 50257,
        hidden_size: int = 1024,
        num_hidden_layers: int = 24,
        num_attention_heads: int = 16,
        intermediate_size: int = 4096,
        max_position_embeddings: int = 8192,
        
        # Configurações específicas de transparência
        transparency_vocab_size: int = 2048,
        corruption_detection_layers: int = 4,
        financial_analysis_dim: int = 512,
        legal_understanding_dim: int = 256,
        
        # Configurações de dropout
        hidden_dropout_prob: float = 0.1,
        attention_probs_dropout_prob: float = 0.1,
        
        # Configurações de ativação
        hidden_act: str = "gelu",
        
        # Configurações de inicialização
        initializer_range: float = 0.02,
        layer_norm_eps: float = 1e-12,
        
        # Tarefas especializadas
        enable_anomaly_detection: bool = True,
        enable_financial_analysis: bool = True,
        enable_legal_reasoning: bool = True,
        
        # Labels para classificação
        num_anomaly_labels: int = 3,  # Normal, Suspeito, Anômalo
        num_financial_labels: int = 5,  # Muito Baixo, Baixo, Médio, Alto, Muito Alto
        num_legal_labels: int = 2,   # Não Conforme, Conforme
        
        **kwargs
    ):
        super().__init__(**kwargs)
        
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.max_position_embeddings = max_position_embeddings
        
        # Configurações específicas
        self.transparency_vocab_size = transparency_vocab_size
        self.corruption_detection_layers = corruption_detection_layers
        self.financial_analysis_dim = financial_analysis_dim
        self.legal_understanding_dim = legal_understanding_dim
        
        # Dropout
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        
        # Ativação
        self.hidden_act = hidden_act
        
        # Inicialização
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        
        # Tarefas
        self.enable_anomaly_detection = enable_anomaly_detection
        self.enable_financial_analysis = enable_financial_analysis
        self.enable_legal_reasoning = enable_legal_reasoning
        
        # Labels
        self.num_anomaly_labels = num_anomaly_labels
        self.num_financial_labels = num_financial_labels
        self.num_legal_labels = num_legal_labels


class CidadaoAIModel(PreTrainedModel):
    """
    Modelo base Cidadão.AI compatível com Hugging Face
    """
    
    config_class = CidadaoAIConfig
    base_model_prefix = "cidadao_gpt"
    supports_gradient_checkpointing = True
    
    def __init__(self, config: CidadaoAIConfig):
        super().__init__(config)
        
        self.config = config
        
        # Modelo base (usar GPT-2 como backbone)
        from transformers import GPT2Model
        self.backbone = GPT2Model(config)
        
        # Embeddings especializados para transparência
        self.transparency_embeddings = nn.ModuleDict({
            'entity_types': nn.Embedding(100, config.hidden_size // 4),
            'financial_types': nn.Embedding(50, config.hidden_size // 4),
            'legal_types': nn.Embedding(200, config.hidden_size // 4),
            'corruption_indicators': nn.Embedding(20, config.hidden_size // 4)
        })
        
        # Cabeças de classificação especializadas
        if config.enable_anomaly_detection:
            self.anomaly_classifier = nn.Sequential(
                nn.Linear(config.hidden_size, config.hidden_size // 2),
                nn.ReLU(),
                nn.Dropout(config.hidden_dropout_prob),
                nn.Linear(config.hidden_size // 2, config.num_anomaly_labels)
            )
            
            self.anomaly_confidence = nn.Sequential(
                nn.Linear(config.hidden_size, config.hidden_size // 4),
                nn.ReLU(),
                nn.Linear(config.hidden_size // 4, 1),
                nn.Sigmoid()
            )
        
        if config.enable_financial_analysis:
            self.financial_classifier = nn.Sequential(
                nn.Linear(config.hidden_size, config.financial_analysis_dim),
                nn.ReLU(),
                nn.Dropout(config.hidden_dropout_prob),
                nn.Linear(config.financial_analysis_dim, config.num_financial_labels)
            )
            
            self.financial_regressor = nn.Sequential(
                nn.Linear(config.hidden_size, config.financial_analysis_dim),
                nn.ReLU(),
                nn.Linear(config.financial_analysis_dim, 1)
            )
        
        if config.enable_legal_reasoning:
            self.legal_classifier = nn.Sequential(
                nn.Linear(config.hidden_size, config.legal_understanding_dim),
                nn.ReLU(),
                nn.Dropout(config.hidden_dropout_prob),
                nn.Linear(config.legal_understanding_dim, config.num_legal_labels)
            )
        
        # Inicializar pesos
        self.init_weights()
    
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        
        # Inputs especializados
        entity_types: Optional[torch.Tensor] = None,
        financial_types: Optional[torch.Tensor] = None,
        legal_types: Optional[torch.Tensor] = None,
        corruption_indicators: Optional[torch.Tensor] = None,
        
        # Labels para treinamento
        anomaly_labels: Optional[torch.Tensor] = None,
        financial_labels: Optional[torch.Tensor] = None,
        legal_labels: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        # Forward do modelo base
        outputs = self.backbone(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        
        sequence_output = outputs[0]  # [batch_size, seq_len, hidden_size]
        
        # Pooling para classificação (usar [CLS] token ou média)
        pooled_output = sequence_output.mean(dim=1)  # [batch_size, hidden_size]
        
        # Adicionar embeddings especializados se fornecidos
        if entity_types is not None:
            entity_embeds = self.transparency_embeddings['entity_types'](entity_types)
            pooled_output = pooled_output + entity_embeds.mean(dim=1)
        
        if corruption_indicators is not None:
            corruption_embeds = self.transparency_embeddings['corruption_indicators'](corruption_indicators)
            pooled_output = pooled_output + corruption_embeds.mean(dim=1)
        
        result = {
            "last_hidden_state": sequence_output,
            "pooler_output": pooled_output,
            "hidden_states": outputs.hidden_states if output_hidden_states else None,
            "attentions": outputs.attentions if output_attentions else None,
        }
        
        # Adicionar predições das cabeças especializadas
        if hasattr(self, 'anomaly_classifier'):
            anomaly_logits = self.anomaly_classifier(pooled_output)
            anomaly_confidence = self.anomaly_confidence(pooled_output)
            result["anomaly_logits"] = anomaly_logits
            result["anomaly_confidence"] = anomaly_confidence
            
            # Calcular loss se labels fornecidos
            if anomaly_labels is not None:
                loss_fct = nn.CrossEntropyLoss()
                anomaly_loss = loss_fct(anomaly_logits, anomaly_labels)
                result["anomaly_loss"] = anomaly_loss
        
        if hasattr(self, 'financial_classifier'):
            financial_logits = self.financial_classifier(pooled_output)
            financial_value = self.financial_regressor(pooled_output)
            result["financial_logits"] = financial_logits
            result["financial_value"] = financial_value
            
            if financial_labels is not None:
                loss_fct = nn.CrossEntropyLoss()
                financial_loss = loss_fct(financial_logits, financial_labels)
                result["financial_loss"] = financial_loss
        
        if hasattr(self, 'legal_classifier'):
            legal_logits = self.legal_classifier(pooled_output)
            result["legal_logits"] = legal_logits
            
            if legal_labels is not None:
                loss_fct = nn.CrossEntropyLoss()
                legal_loss = loss_fct(legal_logits, legal_labels)
                result["legal_loss"] = legal_loss
        
        # Calcular loss total se em modo de treinamento
        if any(key.endswith('_loss') for key in result.keys()):
            total_loss = 0
            loss_count = 0
            
            for key, value in result.items():
                if key.endswith('_loss'):
                    total_loss += value
                    loss_count += 1
            
            if loss_count > 0:
                result["loss"] = total_loss / loss_count
        
        if not return_dict:
            return tuple(v for v in result.values() if v is not None)
        
        return BaseModelOutput(**result)


class CidadaoAIForAnomalyDetection(PreTrainedModel):
    """Modelo Cidadão.AI especializado para detecção de anomalias"""
    
    config_class = CidadaoAIConfig
    
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_anomaly_labels
        self.cidadao_gpt = CidadaoAIModel(config)
        
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        labels=None,
        **kwargs
    ):
        outputs = self.cidadao_gpt(
            input_ids=input_ids,
            attention_mask=attention_mask,
            anomaly_labels=labels,
            **kwargs
        )
        
        logits = outputs.get("anomaly_logits")
        confidence = outputs.get("anomaly_confidence")
        loss = outputs.get("anomaly_loss")
        
        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.get("hidden_states"),
            attentions=outputs.get("attentions"),
        )


class CidadaoAIForFinancialAnalysis(PreTrainedModel):
    """Modelo Cidadão.AI especializado para análise financeira"""
    
    config_class = CidadaoAIConfig
    
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_financial_labels
        self.cidadao_gpt = CidadaoAIModel(config)
        
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        labels=None,
        **kwargs
    ):
        outputs = self.cidadao_gpt(
            input_ids=input_ids,
            attention_mask=attention_mask,
            financial_labels=labels,
            **kwargs
        )
        
        logits = outputs.get("financial_logits")
        value = outputs.get("financial_value")
        loss = outputs.get("financial_loss")
        
        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.get("hidden_states"),
            attentions=outputs.get("attentions"),
        )


class CidadaoAIForLegalCompliance(PreTrainedModel):
    """Modelo Cidadão.AI especializado para conformidade legal"""
    
    config_class = CidadaoAIConfig
    
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_legal_labels
        self.cidadao_gpt = CidadaoAIModel(config)
        
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        labels=None,
        **kwargs
    ):
        outputs = self.cidadao_gpt(
            input_ids=input_ids,
            attention_mask=attention_mask,
            legal_labels=labels,
            **kwargs
        )
        
        logits = outputs.get("legal_logits")
        loss = outputs.get("legal_loss")
        
        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.get("hidden_states"),
            attentions=outputs.get("attentions"),
        )


# Pipelines personalizados para cada tarefa

class TransparencyAnalysisPipeline(Pipeline):
    """Pipeline personalizado para análise de transparência"""
    
    def __init__(self, model, tokenizer, task="transparency-analysis", **kwargs):
        super().__init__(model=model, tokenizer=tokenizer, task=task, **kwargs)
        
        self.anomaly_labels = ["Normal", "Suspeito", "Anômalo"]
        self.financial_labels = ["Muito Baixo", "Baixo", "Médio", "Alto", "Muito Alto"]
        self.legal_labels = ["Não Conforme", "Conforme"]
    
    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}
        forward_kwargs = {}
        postprocess_kwargs = {}
        
        if "max_length" in kwargs:
            preprocess_kwargs["max_length"] = kwargs["max_length"]
        
        if "return_all_scores" in kwargs:
            postprocess_kwargs["return_all_scores"] = kwargs["return_all_scores"]
            
        return preprocess_kwargs, forward_kwargs, postprocess_kwargs
    
    def preprocess(self, inputs, max_length=512):
        return self.tokenizer(
            inputs,
            truncation=True,
            padding=True,
            max_length=max_length,
            return_tensors="pt"
        )
    
    def _forward(self, model_inputs):
        return self.model(**model_inputs)
    
    def postprocess(self, model_outputs, return_all_scores=False):
        results = {}
        
        # Detecção de anomalias
        if hasattr(model_outputs, 'anomaly_logits') or 'anomaly_logits' in model_outputs:
            anomaly_logits = model_outputs.get('anomaly_logits', model_outputs.anomaly_logits)
            anomaly_probs = torch.softmax(anomaly_logits, dim=-1)
            anomaly_pred = torch.argmax(anomaly_probs, dim=-1)
            
            results["anomaly"] = {
                "label": self.anomaly_labels[anomaly_pred.item()],
                "score": anomaly_probs.max().item(),
                "all_scores": [
                    {"label": label, "score": score.item()}
                    for label, score in zip(self.anomaly_labels, anomaly_probs[0])
                ] if return_all_scores else None
            }
        
        # Análise financeira
        if hasattr(model_outputs, 'financial_logits') or 'financial_logits' in model_outputs:
            financial_logits = model_outputs.get('financial_logits', model_outputs.financial_logits)
            financial_probs = torch.softmax(financial_logits, dim=-1)
            financial_pred = torch.argmax(financial_probs, dim=-1)
            
            results["financial"] = {
                "label": self.financial_labels[financial_pred.item()],
                "score": financial_probs.max().item(),
                "all_scores": [
                    {"label": label, "score": score.item()}
                    for label, score in zip(self.financial_labels, financial_probs[0])
                ] if return_all_scores else None
            }
        
        # Conformidade legal
        if hasattr(model_outputs, 'legal_logits') or 'legal_logits' in model_outputs:
            legal_logits = model_outputs.get('legal_logits', model_outputs.legal_logits)
            legal_probs = torch.softmax(legal_logits, dim=-1)
            legal_pred = torch.argmax(legal_probs, dim=-1)
            
            results["legal"] = {
                "label": self.legal_labels[legal_pred.item()],
                "score": legal_probs.max().item(),
                "all_scores": [
                    {"label": label, "score": score.item()}
                    for label, score in zip(self.legal_labels, legal_probs[0])
                ] if return_all_scores else None
            }
        
        return results


# Registro dos modelos no AutoModel
from transformers import AutoConfig, AutoModel

AutoConfig.register("cidadao-gpt", CidadaoAIConfig)
AutoModel.register(CidadaoAIConfig, CidadaoAIModel)


def create_cidadao_pipeline(
    model_name_or_path: str = "neural-thinker/cidadao-gpt",
    task: str = "transparency-analysis",
    **kwargs
) -> TransparencyAnalysisPipeline:
    """
    Criar pipeline Cidadão.AI
    
    Args:
        model_name_or_path: Nome do modelo no HF Hub ou caminho local
        task: Tipo de tarefa
        **kwargs: Argumentos adicionais
    
    Returns:
        Pipeline configurado
    """
    
    model = AutoModel.from_pretrained(model_name_or_path, **kwargs)
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, **kwargs)
    
    return TransparencyAnalysisPipeline(
        model=model,
        tokenizer=tokenizer,
        task=task
    )


# Função de conveniência para uso rápido
def analyze_transparency(
    text: str,
    model_name: str = "neural-thinker/cidadao-gpt"
) -> Dict:
    """
    Análise rápida de transparência
    
    Args:
        text: Texto para análise
        model_name: Nome do modelo
    
    Returns:
        Resultados da análise
    """
    
    pipe = create_cidadao_pipeline(model_name)
    return pipe(text, return_all_scores=True)


if __name__ == "__main__":
    # Exemplo de uso
    
    # Criar configuração
    config = CidadaoAIConfig(
        vocab_size=50257,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        enable_anomaly_detection=True,
        enable_financial_analysis=True,
        enable_legal_reasoning=True
    )
    
    # Criar modelo
    model = CidadaoAIModel(config)
    
    print(f"✅ Modelo Cidadão.AI criado com {sum(p.numel() for p in model.parameters()):,} parâmetros")
    print(f"🎯 Tarefas habilitadas: Anomalias, Financeiro, Legal")
    
    # Teste básico
    batch_size, seq_len = 2, 128
    input_ids = torch.randint(0, config.vocab_size, (batch_size, seq_len))
    attention_mask = torch.ones(batch_size, seq_len)
    
    outputs = model(input_ids=input_ids, attention_mask=attention_mask)
    
    print(f"📊 Output shape: {outputs.last_hidden_state.shape}")
    print(f"🔍 Anomaly logits: {outputs.anomaly_logits.shape if 'anomaly_logits' in outputs else 'N/A'}")
    print(f"💰 Financial logits: {outputs.financial_logits.shape if 'financial_logits' in outputs else 'N/A'}")
    print(f"⚖️ Legal logits: {outputs.legal_logits.shape if 'legal_logits' in outputs else 'N/A'}")