File size: 14,984 Bytes
ce75b0c
4eafb23
 
 
 
 
ce75b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
"""
Module: models.forensic_investigation
Description: Forensic Investigation Models - Ultra-detailed investigation data structures
Author: Anderson Henrique da Silva
Date: 2025-10-07 17:59:00
License: Proprietary - All rights reserved

This module defines comprehensive data models for storing detailed forensic
evidence, legal references, and documentary proof for government transparency.
"""

from typing import List, Optional, Dict, Any
from datetime import datetime
from dataclasses import dataclass, field
from enum import Enum


class AnomalySeverity(str, Enum):
    """Severity levels for anomalies."""
    CRITICAL = "critical"  # Suspeita forte de irregularidade grave
    HIGH = "high"         # Irregularidade significativa
    MEDIUM = "medium"     # Padrão suspeito que merece atenção
    LOW = "low"          # Desvio menor, monitoramento recomendado
    INFO = "info"        # Informativo, sem suspeita


class EvidenceType(str, Enum):
    """Types of evidence collected."""
    DOCUMENT = "document"           # Documento oficial
    STATISTICAL = "statistical"     # Análise estatística
    COMPARATIVE = "comparative"     # Comparação com outros casos
    TEMPORAL = "temporal"          # Análise temporal/padrões
    FINANCIAL = "financial"        # Análise financeira
    LEGAL = "legal"               # Base legal/jurídica
    WITNESS = "witness"           # Declarações/testemunhos públicos
    OPEN_DATA = "open_data"       # Dados abertos gov.br


@dataclass
class OfficialDocument:
    """Official government document with full traceability."""

    title: str
    document_type: str  # edital, contrato, nota_fiscal, processo, etc
    document_number: Optional[str] = None
    url: Optional[str] = None  # Link direto ao documento
    portal_url: Optional[str] = None  # Portal da Transparência
    issue_date: Optional[datetime] = None
    issuing_authority: Optional[str] = None
    legal_basis: Optional[str] = None  # Base legal aplicável
    hash_verification: Optional[str] = None  # Hash para verificação
    access_date: datetime = field(default_factory=datetime.utcnow)
    notes: Optional[str] = None


@dataclass
class LegalEntity:
    """Complete information about a legal entity (supplier, contractor, etc)."""

    name: str
    entity_type: str  # empresa, pessoa_fisica, orgao_publico

    # Identificação
    cnpj: Optional[str] = None
    cpf: Optional[str] = None
    company_registration: Optional[str] = None  # Inscrição estadual/municipal

    # Contato
    address: Optional[str] = None
    city: Optional[str] = None
    state: Optional[str] = None
    phone: Optional[str] = None
    email: Optional[str] = None

    # Links e Referências
    receita_federal_url: Optional[str] = None
    transparency_portal_url: Optional[str] = None
    company_website: Optional[str] = None

    # Histórico
    foundation_date: Optional[datetime] = None
    previous_contracts_count: int = 0
    previous_irregularities: List[str] = field(default_factory=list)
    total_contracted_value: Optional[float] = None

    # Status Legal
    legal_status: Optional[str] = None  # ativa, suspensa, inidônea
    sanctions: List[Dict[str, Any]] = field(default_factory=list)

    # Metadata
    last_updated: datetime = field(default_factory=datetime.utcnow)
    data_sources: List[str] = field(default_factory=list)


@dataclass
class Evidence:
    """Piece of evidence supporting an anomaly finding."""

    evidence_id: str
    evidence_type: EvidenceType
    title: str
    description: str

    # Conteúdo da evidência
    data: Dict[str, Any]  # Dados estruturados da evidência

    # Análise
    analysis_method: str  # Como foi obtida/analisada

    # Optional fields with defaults
    raw_data: Optional[str] = None  # Dados brutos se aplicável
    confidence_score: float = 1.0  # 0-1, confiança na evidência

    # Referências
    source_documents: List[OfficialDocument] = field(default_factory=list)
    source_urls: List[str] = field(default_factory=list)

    # Comparações
    comparison_baseline: Optional[str] = None  # O que foi usado como referência
    deviation_percentage: Optional[float] = None
    statistical_significance: Optional[float] = None  # p-value

    # Metadata
    collected_at: datetime = field(default_factory=datetime.utcnow)
    verified: bool = False
    verification_notes: Optional[str] = None


@dataclass
class FinancialImpact:
    """Detailed financial impact analysis."""

    # Valores
    contract_value: float
    expected_value: Optional[float] = None  # Valor esperado/normal
    overcharge_amount: Optional[float] = None  # Sobrepreço identificado
    potential_savings: Optional[float] = None  # Economia potencial

    # Análise Comparativa
    market_average: Optional[float] = None
    previous_contracts_average: Optional[float] = None
    similar_contracts: List[Dict[str, Any]] = field(default_factory=list)

    # Classificação Orçamentária
    budget_source: Optional[str] = None  # Fonte de recurso
    budget_category: Optional[str] = None
    fiscal_year: Optional[int] = None

    # Impacto
    affected_population: Optional[int] = None  # Pessoas afetadas
    opportunity_cost: Optional[str] = None  # O que poderia ser feito com o valor

    # Cálculos
    calculation_method: Optional[str] = None
    calculation_notes: Optional[str] = None


@dataclass
class Timeline:
    """Detailed timeline of events related to the anomaly."""

    event_date: datetime
    event_type: str  # licitacao, assinatura, pagamento, fiscalizacao, etc
    description: str
    relevance: str  # Por que esse evento é relevante

    # Documentação
    related_documents: List[OfficialDocument] = field(default_factory=list)
    responsible_party: Optional[str] = None

    # Análise
    suspicious_aspects: List[str] = field(default_factory=list)
    legal_implications: Optional[str] = None


@dataclass
class LegalFramework:
    """Legal framework and regulatory context."""

    # Legislação Aplicável
    applicable_laws: List[str] = field(default_factory=list)  # Lei 8666/93, etc
    regulations: List[str] = field(default_factory=list)
    jurisprudence: List[str] = field(default_factory=list)  # Precedentes

    # Órgãos Competentes
    oversight_bodies: List[str] = field(default_factory=list)  # TCU, CGU, MPF
    jurisdiction: Optional[str] = None  # Federal, estadual, municipal

    # Procedimentos
    required_procedures: List[str] = field(default_factory=list)
    procedures_followed: List[str] = field(default_factory=list)
    procedures_violated: List[str] = field(default_factory=list)

    # Penalidades Possíveis
    possible_sanctions: List[str] = field(default_factory=list)
    responsible_parties: List[str] = field(default_factory=list)


@dataclass
class RecommendedAction:
    """Recommended action with full justification."""

    action_type: str  # investigacao, auditoria, denuncia, recurso
    priority: str  # urgente, alta, media, baixa
    title: str
    description: str

    # Justificativa
    rationale: str  # Por que essa ação é recomendada
    expected_outcome: str  # Resultado esperado

    # Execução
    responsible_body: Optional[str] = None  # Quem deve executar
    contact_info: Optional[str] = None
    submission_url: Optional[str] = None
    required_documents: List[str] = field(default_factory=list)

    # Prazos
    recommended_deadline: Optional[datetime] = None
    legal_deadline: Optional[datetime] = None

    # Referências
    legal_basis: List[str] = field(default_factory=list)
    similar_cases: List[str] = field(default_factory=list)


@dataclass
class ForensicAnomalyResult:
    """Ultra-detailed anomaly result with full forensic evidence."""

    # Identificação
    anomaly_id: str
    anomaly_type: str
    severity: AnomalySeverity

    # Título e Descrição Executiva
    title: str
    executive_summary: str  # Resumo executivo (2-3 parágrafos)
    detailed_description: str  # Descrição completa e técnica

    # O QUE foi detectado
    what_happened: str  # Descrição clara do que aconteceu

    # COMO foi detectado
    detection_method: str  # Como o sistema detectou
    analysis_methodology: str  # Metodologia de análise aplicada

    # POR QUE é suspeito/irregular
    why_suspicious: str  # Explicação clara das irregularidades
    legal_violations: List[str] = field(default_factory=list)

    # Confiança e Qualidade
    confidence_score: float = 0.0  # 0-1
    data_quality_score: float = 0.0  # 0-1
    completeness_score: float = 0.0  # 0-1

    # ENTIDADES ENVOLVIDAS
    involved_entities: List[LegalEntity] = field(default_factory=list)

    # DOCUMENTAÇÃO E EVIDÊNCIAS
    official_documents: List[OfficialDocument] = field(default_factory=list)
    evidence: List[Evidence] = field(default_factory=list)

    # ANÁLISE FINANCEIRA
    financial_impact: Optional[FinancialImpact] = None

    # CRONOLOGIA
    timeline: List[Timeline] = field(default_factory=list)

    # CONTEXTO LEGAL
    legal_framework: Optional[LegalFramework] = None

    # COMPARAÇÕES E BENCHMARK
    similar_cases: List[Dict[str, Any]] = field(default_factory=list)
    statistical_comparison: Optional[Dict[str, Any]] = None

    # AÇÕES RECOMENDADAS
    recommended_actions: List[RecommendedAction] = field(default_factory=list)

    # FONTES E RASTREABILIDADE
    data_sources: List[str] = field(default_factory=list)
    api_endpoints_used: List[str] = field(default_factory=list)
    external_references: List[str] = field(default_factory=list)

    # VISUALIZAÇÕES
    charts: List[Dict[str, Any]] = field(default_factory=list)
    visualizations_urls: List[str] = field(default_factory=list)

    # METADATA
    created_at: datetime = field(default_factory=datetime.utcnow)
    analyzed_by: str = "Cidadão.AI"
    analysis_version: str = "1.0"
    last_updated: datetime = field(default_factory=datetime.utcnow)

    # Para Auditoria
    reproducible: bool = True
    reproducibility_notes: Optional[str] = None
    peer_reviewed: bool = False
    review_notes: Optional[str] = None

    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary for JSON serialization."""
        return {
            "anomaly_id": self.anomaly_id,
            "anomaly_type": self.anomaly_type,
            "severity": self.severity.value,
            "title": self.title,
            "executive_summary": self.executive_summary,
            "detailed_description": self.detailed_description,
            "what_happened": self.what_happened,
            "detection_method": self.detection_method,
            "analysis_methodology": self.analysis_methodology,
            "why_suspicious": self.why_suspicious,
            "legal_violations": self.legal_violations,
            "confidence_score": self.confidence_score,
            "data_quality_score": self.data_quality_score,
            "completeness_score": self.completeness_score,
            "involved_entities": [
                {
                    "name": e.name,
                    "type": e.entity_type,
                    "cnpj": e.cnpj,
                    "cpf": e.cpf,
                    "address": e.address,
                    "city": e.city,
                    "state": e.state,
                    "transparency_portal_url": e.transparency_portal_url,
                    "previous_contracts_count": e.previous_contracts_count,
                    "legal_status": e.legal_status,
                    "sanctions": e.sanctions,
                }
                for e in self.involved_entities
            ],
            "official_documents": [
                {
                    "title": d.title,
                    "type": d.document_type,
                    "number": d.document_number,
                    "url": d.url,
                    "portal_url": d.portal_url,
                    "issue_date": d.issue_date.isoformat() if d.issue_date else None,
                    "issuing_authority": d.issuing_authority,
                    "legal_basis": d.legal_basis,
                }
                for d in self.official_documents
            ],
            "evidence": [
                {
                    "id": e.evidence_id,
                    "type": e.evidence_type.value,
                    "title": e.title,
                    "description": e.description,
                    "data": e.data,
                    "analysis_method": e.analysis_method,
                    "confidence_score": e.confidence_score,
                    "source_urls": e.source_urls,
                    "deviation_percentage": e.deviation_percentage,
                    "statistical_significance": e.statistical_significance,
                }
                for e in self.evidence
            ],
            "financial_impact": {
                "contract_value": self.financial_impact.contract_value,
                "expected_value": self.financial_impact.expected_value,
                "overcharge_amount": self.financial_impact.overcharge_amount,
                "potential_savings": self.financial_impact.potential_savings,
                "market_average": self.financial_impact.market_average,
                "similar_contracts": self.financial_impact.similar_contracts,
                "opportunity_cost": self.financial_impact.opportunity_cost,
            } if self.financial_impact else None,
            "timeline": [
                {
                    "date": t.event_date.isoformat(),
                    "type": t.event_type,
                    "description": t.description,
                    "relevance": t.relevance,
                    "suspicious_aspects": t.suspicious_aspects,
                }
                for t in self.timeline
            ],
            "legal_framework": {
                "applicable_laws": self.legal_framework.applicable_laws,
                "oversight_bodies": self.legal_framework.oversight_bodies,
                "procedures_violated": self.legal_framework.procedures_violated,
                "possible_sanctions": self.legal_framework.possible_sanctions,
            } if self.legal_framework else None,
            "recommended_actions": [
                {
                    "type": a.action_type,
                    "priority": a.priority,
                    "title": a.title,
                    "description": a.description,
                    "rationale": a.rationale,
                    "expected_outcome": a.expected_outcome,
                    "responsible_body": a.responsible_body,
                    "submission_url": a.submission_url,
                    "legal_basis": a.legal_basis,
                }
                for a in self.recommended_actions
            ],
            "data_sources": self.data_sources,
            "created_at": self.created_at.isoformat(),
            "analyzed_by": self.analyzed_by,
            "reproducible": self.reproducible,
        }