File size: 29,712 Bytes
88b8ba0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
"""
Advanced Agent Orchestrator for Cidadão.AI.
Manages complex agent coordination patterns and workflows.
"""
import asyncio
import time
from datetime import datetime, timedelta
from typing import Any, Dict, List, Optional, Callable, Tuple
from dataclasses import dataclass, field
from enum import Enum
from collections import defaultdict
import weakref
from src.core import get_logger
from src.agents.deodoro import BaseAgent, AgentContext, AgentMessage, AgentResponse
from src.services.agent_lazy_loader import agent_lazy_loader
from src.services.cache_service import CacheService
from src.core.exceptions import OrchestrationError
logger = get_logger("agent.orchestrator")
class OrchestrationPattern(Enum):
"""Orchestration patterns supported by the system."""
SEQUENTIAL = "sequential"
PARALLEL = "parallel"
FAN_OUT_FAN_IN = "fan_out_fan_in"
CONDITIONAL = "conditional"
SAGA = "saga"
MAP_REDUCE = "map_reduce"
EVENT_DRIVEN = "event_driven"
class CircuitState(Enum):
"""Circuit breaker states."""
CLOSED = "closed"
OPEN = "open"
HALF_OPEN = "half_open"
@dataclass
class CircuitBreaker:
"""Circuit breaker for agent fault tolerance."""
failure_threshold: int = 5
recovery_timeout: int = 60 # seconds
half_open_requests: int = 3
state: CircuitState = CircuitState.CLOSED
failure_count: int = 0
last_failure_time: Optional[datetime] = None
success_count: int = 0
@dataclass
class WorkflowStep:
"""Represents a step in an orchestrated workflow."""
step_id: str
agent_name: str
action: str
input_mapping: Dict[str, str] = field(default_factory=dict)
output_mapping: Dict[str, str] = field(default_factory=dict)
conditions: Dict[str, Any] = field(default_factory=dict)
retry_config: Dict[str, Any] = field(default_factory=dict)
timeout: int = 300 # seconds
@dataclass
class WorkflowDefinition:
"""Defines an orchestrated workflow."""
workflow_id: str
name: str
pattern: OrchestrationPattern
steps: List[WorkflowStep]
metadata: Dict[str, Any] = field(default_factory=dict)
timeout: int = 1800 # 30 minutes
@dataclass
class OrchestrationMetrics:
"""Metrics for orchestration performance."""
total_executions: int = 0
successful_executions: int = 0
failed_executions: int = 0
total_duration_seconds: float = 0.0
agent_execution_times: Dict[str, List[float]] = field(default_factory=lambda: defaultdict(list))
pattern_usage: Dict[str, int] = field(default_factory=lambda: defaultdict(int))
class EventBus:
"""Simple event bus for event-driven choreography."""
def __init__(self):
self._handlers: Dict[str, List[Callable]] = defaultdict(list)
self._async_handlers: Dict[str, List[Callable]] = defaultdict(list)
def on(self, event_name: str, handler: Callable):
"""Register an event handler."""
if asyncio.iscoroutinefunction(handler):
self._async_handlers[event_name].append(handler)
else:
self._handlers[event_name].append(handler)
async def emit(self, event_name: str, data: Any = None):
"""Emit an event to all registered handlers."""
event = {"name": event_name, "data": data, "timestamp": datetime.utcnow()}
# Call sync handlers
for handler in self._handlers.get(event_name, []):
try:
handler(event)
except Exception as e:
logger.error(f"Error in event handler: {e}")
# Call async handlers
tasks = []
for handler in self._async_handlers.get(event_name, []):
tasks.append(handler(event))
if tasks:
await asyncio.gather(*tasks, return_exceptions=True)
class AgentOrchestrator:
"""Advanced orchestrator for multi-agent coordination."""
def __init__(self):
self.logger = logger
self._workflows: Dict[str, WorkflowDefinition] = {}
self._circuit_breakers: Dict[str, CircuitBreaker] = {}
self._metrics = OrchestrationMetrics()
self._event_bus = EventBus()
self._cache = CacheService()
self._agent_capabilities: Dict[str, List[str]] = {}
self._running_workflows: weakref.WeakValueDictionary = weakref.WeakValueDictionary()
async def initialize(self):
"""Initialize the orchestrator."""
self.logger.info("Initializing Agent Orchestrator")
# Discover agent capabilities
await self._discover_agent_capabilities()
# Register default workflows
self._register_default_workflows()
async def _discover_agent_capabilities(self):
"""Discover capabilities of all available agents."""
try:
agents = await agent_lazy_loader.list_agents()
for agent_info in agents:
agent = await agent_lazy_loader.get_agent(agent_info["name"])
if hasattr(agent, 'capabilities'):
self._agent_capabilities[agent_info["name"]] = agent.capabilities
except Exception as e:
self.logger.error(f"Error discovering agent capabilities: {e}")
def _register_default_workflows(self):
"""Register default workflow patterns."""
# Investigation workflow
investigation_workflow = WorkflowDefinition(
workflow_id="default_investigation",
name="Standard Investigation Workflow",
pattern=OrchestrationPattern.SEQUENTIAL,
steps=[
WorkflowStep(
step_id="anomaly_detection",
agent_name="zumbi",
action="detect_anomalies"
),
WorkflowStep(
step_id="pattern_analysis",
agent_name="anita",
action="analyze_patterns",
conditions={"if": "anomalies_found", "gt": 0}
),
WorkflowStep(
step_id="report_generation",
agent_name="tiradentes",
action="generate_report"
)
]
)
self._workflows["default_investigation"] = investigation_workflow
async def execute_workflow(
self,
workflow_id: str,
initial_data: Dict[str, Any],
context: AgentContext
) -> Dict[str, Any]:
"""Execute a complete workflow."""
workflow = self._workflows.get(workflow_id)
if not workflow:
raise OrchestrationError(f"Workflow {workflow_id} not found")
self.logger.info(f"Executing workflow: {workflow.name}")
start_time = time.time()
try:
# Track metrics
self._metrics.total_executions += 1
self._metrics.pattern_usage[workflow.pattern.value] += 1
# Execute based on pattern
if workflow.pattern == OrchestrationPattern.SEQUENTIAL:
result = await self._execute_sequential(workflow, initial_data, context)
elif workflow.pattern == OrchestrationPattern.PARALLEL:
result = await self._execute_parallel(workflow, initial_data, context)
elif workflow.pattern == OrchestrationPattern.FAN_OUT_FAN_IN:
result = await self._execute_fan_out_fan_in(workflow, initial_data, context)
elif workflow.pattern == OrchestrationPattern.CONDITIONAL:
result = await self._execute_conditional(workflow, initial_data, context)
elif workflow.pattern == OrchestrationPattern.SAGA:
result = await self._execute_saga(workflow, initial_data, context)
elif workflow.pattern == OrchestrationPattern.MAP_REDUCE:
result = await self._execute_map_reduce(workflow, initial_data, context)
else:
raise OrchestrationError(f"Unsupported pattern: {workflow.pattern}")
# Update metrics
duration = time.time() - start_time
self._metrics.successful_executions += 1
self._metrics.total_duration_seconds += duration
return {
"workflow_id": workflow_id,
"status": "completed",
"result": result,
"duration": duration
}
except Exception as e:
self._metrics.failed_executions += 1
raise OrchestrationError(f"Workflow execution failed: {e}")
async def _execute_sequential(
self,
workflow: WorkflowDefinition,
data: Dict[str, Any],
context: AgentContext
) -> Dict[str, Any]:
"""Execute workflow steps sequentially."""
current_data = data.copy()
results = []
for step in workflow.steps:
# Check conditions
if not self._check_conditions(step.conditions, current_data):
continue
# Execute step
step_result = await self._execute_step(step, current_data, context)
results.append(step_result)
# Map output to next input
for output_key, data_key in step.output_mapping.items():
if output_key in step_result.get("data", {}):
current_data[data_key] = step_result["data"][output_key]
return {
"pattern": "sequential",
"steps_executed": len(results),
"final_data": current_data,
"step_results": results
}
async def _execute_parallel(
self,
workflow: WorkflowDefinition,
data: Dict[str, Any],
context: AgentContext
) -> Dict[str, Any]:
"""Execute workflow steps in parallel."""
tasks = []
for step in workflow.steps:
if self._check_conditions(step.conditions, data):
tasks.append(self._execute_step(step, data.copy(), context))
results = await asyncio.gather(*tasks, return_exceptions=True)
return {
"pattern": "parallel",
"steps_executed": len(results),
"results": [r for r in results if not isinstance(r, Exception)],
"errors": [str(r) for r in results if isinstance(r, Exception)]
}
async def _execute_step(
self,
step: WorkflowStep,
data: Dict[str, Any],
context: AgentContext
) -> Dict[str, Any]:
"""Execute a single workflow step."""
start_time = time.time()
try:
# Get agent
agent = await self._get_agent_with_circuit_breaker(step.agent_name)
# Prepare input data
input_data = {}
for input_key, data_key in step.input_mapping.items():
if data_key in data:
input_data[input_key] = data[data_key]
# Create message
message = AgentMessage(
type=step.action,
data=input_data or data,
sender="orchestrator",
metadata={"workflow_step": step.step_id}
)
# Execute with timeout
response = await asyncio.wait_for(
agent.process(message, context),
timeout=step.timeout
)
# Track metrics
duration = time.time() - start_time
self._metrics.agent_execution_times[step.agent_name].append(duration)
return {
"step_id": step.step_id,
"agent": step.agent_name,
"success": response.success,
"data": response.data,
"duration": duration
}
except asyncio.TimeoutError:
raise OrchestrationError(f"Step {step.step_id} timed out after {step.timeout}s")
except Exception as e:
raise OrchestrationError(f"Step {step.step_id} failed: {e}")
def _check_conditions(self, conditions: Dict[str, Any], data: Dict[str, Any]) -> bool:
"""Check if conditions are met for step execution."""
if not conditions:
return True
# Simple condition evaluation
if "if" in conditions:
field = conditions["if"]
if field not in data:
return False
value = data[field]
if "eq" in conditions:
return value == conditions["eq"]
elif "gt" in conditions:
return value > conditions["gt"]
elif "lt" in conditions:
return value < conditions["lt"]
elif "in" in conditions:
return value in conditions["in"]
return True
async def _get_agent_with_circuit_breaker(self, agent_name: str) -> BaseAgent:
"""Get agent with circuit breaker protection."""
circuit_breaker = self._circuit_breakers.get(agent_name)
if not circuit_breaker:
circuit_breaker = CircuitBreaker()
self._circuit_breakers[agent_name] = circuit_breaker
# Check circuit state
if circuit_breaker.state == CircuitState.OPEN:
# Check if recovery timeout has passed
if (datetime.utcnow() - circuit_breaker.last_failure_time).seconds > circuit_breaker.recovery_timeout:
circuit_breaker.state = CircuitState.HALF_OPEN
circuit_breaker.success_count = 0
else:
raise OrchestrationError(f"Circuit breaker open for {agent_name}")
try:
agent = await agent_lazy_loader.get_agent(agent_name)
# Reset on success
if circuit_breaker.state == CircuitState.HALF_OPEN:
circuit_breaker.success_count += 1
if circuit_breaker.success_count >= circuit_breaker.half_open_requests:
circuit_breaker.state = CircuitState.CLOSED
circuit_breaker.failure_count = 0
return agent
except Exception as e:
# Update failure count
circuit_breaker.failure_count += 1
circuit_breaker.last_failure_time = datetime.utcnow()
if circuit_breaker.failure_count >= circuit_breaker.failure_threshold:
circuit_breaker.state = CircuitState.OPEN
raise
async def select_best_agent(self, required_capabilities: List[str]) -> Optional[BaseAgent]:
"""Select the best agent based on required capabilities."""
best_match = None
best_score = 0
for agent_name, capabilities in self._agent_capabilities.items():
# Calculate capability match score
score = sum(1 for cap in required_capabilities if cap in capabilities)
if score > best_score:
best_score = score
best_match = agent_name
if best_match:
return await agent_lazy_loader.get_agent(best_match)
return None
async def execute_with_retry(
self,
agent: BaseAgent,
message: AgentMessage,
context: AgentContext,
max_retries: int = 3,
backoff_multiplier: float = 2.0,
fallback_agent: Optional[BaseAgent] = None
) -> AgentResponse:
"""Execute agent with retry logic and optional fallback."""
last_error = None
for attempt in range(max_retries + 1):
try:
return await agent.process(message, context)
except Exception as e:
last_error = e
if attempt < max_retries:
wait_time = (backoff_multiplier ** attempt) * 1.0
await asyncio.sleep(wait_time)
continue
# Try fallback agent if available
if fallback_agent:
self.logger.warning(f"Primary agent failed, trying fallback")
return await fallback_agent.process(message, context)
raise
raise OrchestrationError(f"All retry attempts failed: {last_error}")
def configure_retry_policy(self, policy: Dict[str, Any]):
"""Configure global retry policy."""
self._retry_policy = policy
def configure_circuit_breaker(self, config: Dict[str, Any]):
"""Configure circuit breaker settings."""
self._circuit_breaker_config = config
async def execute_conditional_workflow(
self,
workflow_def: Dict[str, Any],
initial_data: Dict[str, Any],
context: AgentContext
) -> List[Dict[str, Any]]:
"""Execute a conditional workflow with branching."""
execution_path = []
current_step = workflow_def["start"]
current_data = initial_data.copy()
while current_step:
step_def = workflow_def["steps"][current_step]
# Execute step
agent_name = step_def["agent"]
agent = await agent_lazy_loader.get_agent(agent_name)
message = AgentMessage(
type="process",
data=current_data,
sender="conditional_workflow",
metadata={"step": current_step}
)
response = await agent.process(message, context)
execution_path.append({
"step": current_step,
"agent": agent_name,
"success": response.success,
"data": response.data
})
# Determine next step based on conditions
next_step_def = step_def.get("next")
if not next_step_def:
break
if isinstance(next_step_def, str):
current_step = next_step_def
else:
# Conditional branching
condition = next_step_def.get("condition")
if condition == "anomalies_found":
if response.data.get("anomalies_detected", 0) > 0:
current_step = next_step_def.get("true")
else:
current_step = next_step_def.get("false")
elif condition == "high_risk":
if response.data.get("risk_level") == "high":
current_step = next_step_def.get("true")
else:
current_step = next_step_def.get("false")
else:
current_step = next_step_def.get("default")
# Update data for next step
current_data.update(response.data)
return execution_path
async def discover_agents(self) -> List[Dict[str, Any]]:
"""Discover all available agents."""
return await agent_lazy_loader.list_agents()
async def find_agents_with_capability(self, capability: str) -> List[Dict[str, Any]]:
"""Find agents with a specific capability."""
matching_agents = []
for agent_name, capabilities in self._agent_capabilities.items():
if capability in capabilities:
agent_info = {
"name": agent_name,
"capabilities": capabilities
}
matching_agents.append(agent_info)
return matching_agents
async def execute_with_circuit_breaker(
self,
agent: BaseAgent,
message: AgentMessage,
context: AgentContext
) -> AgentResponse:
"""Execute agent with circuit breaker protection."""
agent_name = agent.name
circuit_breaker = self._circuit_breakers.get(agent_name)
if not circuit_breaker:
circuit_breaker = CircuitBreaker(**self._circuit_breaker_config)
self._circuit_breakers[agent_name] = circuit_breaker
if circuit_breaker.state == CircuitState.OPEN:
if (datetime.utcnow() - circuit_breaker.last_failure_time).seconds < circuit_breaker.recovery_timeout:
raise OrchestrationError(f"Circuit breaker open for {agent_name}")
else:
circuit_breaker.state = CircuitState.HALF_OPEN
try:
response = await agent.process(message, context)
if circuit_breaker.state == CircuitState.HALF_OPEN:
circuit_breaker.success_count += 1
if circuit_breaker.success_count >= circuit_breaker.half_open_requests:
circuit_breaker.state = CircuitState.CLOSED
circuit_breaker.failure_count = 0
return response
except Exception as e:
circuit_breaker.failure_count += 1
circuit_breaker.last_failure_time = datetime.utcnow()
if circuit_breaker.failure_count >= circuit_breaker.failure_threshold:
circuit_breaker.state = CircuitState.OPEN
raise
async def start_saga(
self,
saga_definition: Dict[str, Any],
initial_data: Dict[str, Any],
context: AgentContext
) -> Dict[str, Any]:
"""Start a saga transaction."""
saga_state = {
"saga_id": f"saga_{datetime.utcnow().timestamp()}",
"name": saga_definition["name"],
"current_step": 0,
"completed_steps": [],
"compensated_steps": [],
"data": initial_data,
"completed": False,
"failed": False
}
return saga_state
async def execute_saga_step(
self,
saga_state: Dict[str, Any],
step: Dict[str, Any],
context: AgentContext
) -> Dict[str, Any]:
"""Execute a saga step with compensation support."""
try:
agent_name = step["agent"]
agent = await agent_lazy_loader.get_agent(agent_name)
message = AgentMessage(
type=step["service"],
data=saga_state["data"],
sender="saga_coordinator",
metadata={"saga_id": saga_state["saga_id"]}
)
response = await agent.process(message, context)
if response.success:
saga_state["completed_steps"].append({
"step": step,
"result": response.data
})
saga_state["current_step"] += 1
if saga_state["current_step"] >= len(saga_state.get("total_steps", [])):
saga_state["completed"] = True
else:
saga_state["failed"] = True
# Trigger compensation
await self._compensate_saga(saga_state, context)
except Exception as e:
saga_state["failed"] = True
saga_state["error"] = str(e)
await self._compensate_saga(saga_state, context)
return saga_state
async def _compensate_saga(self, saga_state: Dict[str, Any], context: AgentContext):
"""Compensate completed saga steps."""
for completed_step in reversed(saga_state["completed_steps"]):
try:
step = completed_step["step"]
if "compensation" in step:
agent = await agent_lazy_loader.get_agent(step["agent"])
compensation_message = AgentMessage(
type=step["compensation"],
data={
"original_data": saga_state["data"],
"step_result": completed_step["result"]
},
sender="saga_compensator",
metadata={"saga_id": saga_state["saga_id"]}
)
await agent.process(compensation_message, context)
saga_state["compensated_steps"].append(step)
except Exception as e:
self.logger.error(f"Compensation failed for step: {e}")
def get_event_bus(self) -> EventBus:
"""Get the event bus for choreography."""
return self._event_bus
async def get_stats(self) -> Dict[str, Any]:
"""Get orchestrator statistics."""
return {
"total_executions": self._metrics.total_executions,
"successful_executions": self._metrics.successful_executions,
"failed_executions": self._metrics.failed_executions,
"success_rate": (
self._metrics.successful_executions / self._metrics.total_executions
if self._metrics.total_executions > 0 else 0
),
"average_duration": (
self._metrics.total_duration_seconds / self._metrics.successful_executions
if self._metrics.successful_executions > 0 else 0
),
"pattern_usage": dict(self._metrics.pattern_usage),
"agent_performance": {
agent: {
"executions": len(times),
"avg_time": sum(times) / len(times) if times else 0,
"min_time": min(times) if times else 0,
"max_time": max(times) if times else 0
}
for agent, times in self._metrics.agent_execution_times.items()
},
"circuit_breakers": {
agent: {
"state": cb.state.value,
"failure_count": cb.failure_count
}
for agent, cb in self._circuit_breakers.items()
}
}
async def _execute_fan_out_fan_in(
self,
workflow: WorkflowDefinition,
data: Dict[str, Any],
context: AgentContext
) -> Dict[str, Any]:
"""Execute fan-out/fan-in pattern."""
# Fan-out: execute multiple steps in parallel
fan_out_results = await self._execute_parallel(workflow, data, context)
# Fan-in: aggregate results
aggregated_data = {
"pattern": "fan_out_fan_in",
"fan_out_results": fan_out_results["results"],
"aggregated_data": {}
}
# Simple aggregation - can be customized
for result in fan_out_results["results"]:
if result.get("success") and "data" in result:
aggregated_data["aggregated_data"].update(result["data"])
return aggregated_data
async def _execute_map_reduce(
self,
workflow: WorkflowDefinition,
data: Dict[str, Any],
context: AgentContext
) -> Dict[str, Any]:
"""Execute map-reduce pattern."""
# Map phase
map_items = data.get("items", [])
map_results = []
for item in map_items:
# Execute map step for each item
map_step = workflow.steps[0] # Assuming first step is map
step_result = await self._execute_step(
map_step,
{"item": item},
context
)
map_results.append(step_result)
# Reduce phase
reduce_step = workflow.steps[1] # Assuming second step is reduce
reduce_data = {
"map_results": [r["data"] for r in map_results if r.get("success")]
}
reduce_result = await self._execute_step(
reduce_step,
reduce_data,
context
)
return {
"pattern": "map_reduce",
"map_count": len(map_results),
"reduce_result": reduce_result["data"] if reduce_result.get("success") else None
}
async def _execute_saga(
self,
workflow: WorkflowDefinition,
data: Dict[str, Any],
context: AgentContext
) -> Dict[str, Any]:
"""Execute saga pattern with compensation."""
saga_state = await self.start_saga(
{"name": workflow.name, "steps": workflow.steps},
data,
context
)
saga_state["total_steps"] = workflow.steps
for step in workflow.steps:
saga_state = await self.execute_saga_step(
saga_state,
{"agent": step.agent_name, "service": step.action},
context
)
if saga_state["failed"]:
break
return {
"pattern": "saga",
"saga_id": saga_state["saga_id"],
"completed": saga_state["completed"],
"failed": saga_state["failed"],
"completed_steps": len(saga_state["completed_steps"]),
"compensated_steps": len(saga_state["compensated_steps"])
}
# Global orchestrator instance
orchestrator = AgentOrchestrator()
async def get_orchestrator() -> AgentOrchestrator:
"""Get the global orchestrator instance."""
return orchestrator |