File size: 14,565 Bytes
138f7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
"""
Module: services.batch_service
Description: Batch processing service integrating Celery and priority queue
Author: Anderson H. Silva
Date: 2025-01-25
License: Proprietary - All rights reserved
"""

from typing import Dict, Any, List, Optional, Callable
from datetime import datetime, timedelta
from enum import Enum
import asyncio

from pydantic import BaseModel, Field
from celery import group, chain, chord
from celery.result import AsyncResult

from src.core import get_logger
from src.infrastructure.queue.celery_app import celery_app, get_celery_app
from src.infrastructure.queue.priority_queue import (
    priority_queue,
    TaskPriority,
    TaskStatus,
    QueueStats
)
from src.infrastructure.queue.tasks import (
    run_investigation,
    analyze_contracts_batch,
    detect_anomalies_batch,
    analyze_patterns,
    generate_report,
    export_to_pdf,
    monitor_anomalies
)

logger = get_logger(__name__)


class BatchType(str, Enum):
    """Batch processing types."""
    INVESTIGATION = "investigation"
    ANALYSIS = "analysis"
    REPORT = "report"
    EXPORT = "export"
    MONITORING = "monitoring"


class BatchJobRequest(BaseModel):
    """Batch job request model."""
    batch_type: BatchType
    items: List[Dict[str, Any]]
    priority: TaskPriority = TaskPriority.NORMAL
    parallel: bool = True
    max_workers: int = 5
    callback_url: Optional[str] = None
    metadata: Dict[str, Any] = Field(default_factory=dict)


class BatchJobStatus(BaseModel):
    """Batch job status model."""
    job_id: str
    batch_type: BatchType
    total_items: int
    completed: int
    failed: int
    pending: int
    status: str
    started_at: datetime
    completed_at: Optional[datetime] = None
    duration_seconds: Optional[float] = None
    results: List[Dict[str, Any]] = Field(default_factory=list)


class BatchProcessingService:
    """Service for batch processing operations."""
    
    def __init__(self):
        """Initialize batch processing service."""
        self.celery_app = get_celery_app()
        self._active_jobs: Dict[str, BatchJobStatus] = {}
        self._job_results: Dict[str, List[AsyncResult]] = {}
        
        logger.info("batch_service_initialized")
    
    async def start(self):
        """Start batch processing service."""
        # Start priority queue
        await priority_queue.start()
        
        # Register handlers
        self._register_handlers()
        
        logger.info("batch_service_started")
    
    async def stop(self):
        """Stop batch processing service."""
        # Stop priority queue
        await priority_queue.stop()
        
        # Cancel active jobs
        for job_id, results in self._job_results.items():
            for result in results:
                if not result.ready():
                    result.revoke(terminate=True)
        
        logger.info("batch_service_stopped")
    
    def _register_handlers(self):
        """Register task handlers with priority queue."""
        # Investigation handler
        async def investigation_handler(payload: Dict[str, Any], metadata: Dict[str, Any]):
            result = run_investigation.delay(
                investigation_id=payload["investigation_id"],
                query=payload["query"],
                config=payload.get("config")
            )
            return result.id
        
        priority_queue.register_handler("investigation", investigation_handler)
        
        # Analysis handler
        async def analysis_handler(payload: Dict[str, Any], metadata: Dict[str, Any]):
            result = analyze_patterns.delay(
                data_type=payload["data_type"],
                time_range=payload["time_range"],
                pattern_types=payload.get("pattern_types"),
                min_confidence=payload.get("min_confidence", 0.7)
            )
            return result.id
        
        priority_queue.register_handler("analysis", analysis_handler)
    
    async def submit_batch_job(self, request: BatchJobRequest) -> BatchJobStatus:
        """
        Submit a batch job for processing.
        
        Args:
            request: Batch job request
            
        Returns:
            Batch job status
        """
        job_id = f"BATCH-{datetime.now().strftime('%Y%m%d%H%M%S')}"
        
        # Create job status
        job_status = BatchJobStatus(
            job_id=job_id,
            batch_type=request.batch_type,
            total_items=len(request.items),
            completed=0,
            failed=0,
            pending=len(request.items),
            status="submitted",
            started_at=datetime.now()
        )
        
        self._active_jobs[job_id] = job_status
        
        logger.info(
            "batch_job_submitted",
            job_id=job_id,
            batch_type=request.batch_type.value,
            items=len(request.items),
            priority=request.priority.name
        )
        
        # Create tasks based on batch type
        if request.batch_type == BatchType.INVESTIGATION:
            await self._process_investigation_batch(job_id, request)
        elif request.batch_type == BatchType.ANALYSIS:
            await self._process_analysis_batch(job_id, request)
        elif request.batch_type == BatchType.REPORT:
            await self._process_report_batch(job_id, request)
        elif request.batch_type == BatchType.EXPORT:
            await self._process_export_batch(job_id, request)
        elif request.batch_type == BatchType.MONITORING:
            await self._process_monitoring_batch(job_id, request)
        
        # Update status
        job_status.status = "processing"
        
        return job_status
    
    async def _process_investigation_batch(
        self,
        job_id: str,
        request: BatchJobRequest
    ):
        """Process investigation batch."""
        tasks = []
        
        for item in request.items:
            task = run_investigation.s(
                investigation_id=item.get("id", f"{job_id}-{len(tasks)}"),
                query=item["query"],
                config=item.get("config", {})
            )
            tasks.append(task)
        
        # Execute based on parallelism
        if request.parallel:
            job = group(tasks)
        else:
            job = chain(tasks)
        
        # Submit to Celery
        result = job.apply_async(
            priority=request.priority.value,
            link=self._create_callback_task(job_id, request.callback_url)
        )
        
        self._job_results[job_id] = [result]
    
    async def _process_analysis_batch(
        self,
        job_id: str,
        request: BatchJobRequest
    ):
        """Process analysis batch."""
        tasks = []
        
        for item in request.items:
            if item.get("type") == "contracts":
                task = analyze_contracts_batch.s(
                    contract_ids=item["contract_ids"],
                    analysis_type=item.get("analysis_type", "anomaly"),
                    threshold=item.get("threshold", 0.7)
                )
            elif item.get("type") == "patterns":
                task = analyze_patterns.s(
                    data_type=item["data_type"],
                    time_range=item["time_range"],
                    pattern_types=item.get("pattern_types"),
                    min_confidence=item.get("min_confidence", 0.7)
                )
            else:
                continue
            
            tasks.append(task)
        
        # Execute in parallel
        job = group(tasks)
        result = job.apply_async(
            priority=request.priority.value,
            link=self._create_callback_task(job_id, request.callback_url)
        )
        
        self._job_results[job_id] = [result]
    
    async def _process_report_batch(
        self,
        job_id: str,
        request: BatchJobRequest
    ):
        """Process report batch."""
        tasks = []
        
        for item in request.items:
            task = generate_report.s(
                report_id=item.get("id", f"{job_id}-{len(tasks)}"),
                report_type=item["report_type"],
                investigation_ids=item["investigation_ids"],
                config=item.get("config", {})
            )
            tasks.append(task)
        
        # Generate reports in parallel
        job = group(tasks)
        result = job.apply_async(
            priority=request.priority.value,
            link=self._create_callback_task(job_id, request.callback_url)
        )
        
        self._job_results[job_id] = [result]
    
    async def _process_export_batch(
        self,
        job_id: str,
        request: BatchJobRequest
    ):
        """Process export batch."""
        tasks = []
        
        for item in request.items:
            task = export_to_pdf.s(
                content_type=item["content_type"],
                content_id=item["content_id"],
                options=item.get("options", {})
            )
            tasks.append(task)
        
        # Export in parallel with limited workers
        job = group(tasks)
        result = job.apply_async(
            priority=request.priority.value,
            link=self._create_callback_task(job_id, request.callback_url),
            queue="normal"
        )
        
        self._job_results[job_id] = [result]
    
    async def _process_monitoring_batch(
        self,
        job_id: str,
        request: BatchJobRequest
    ):
        """Process monitoring batch."""
        tasks = []
        
        for item in request.items:
            task = monitor_anomalies.s(
                monitoring_config=item["config"],
                alert_threshold=item.get("threshold", 0.8)
            )
            tasks.append(task)
        
        # Run monitoring tasks
        job = group(tasks)
        result = job.apply_async(
            priority=request.priority.value,
            link=self._create_callback_task(job_id, request.callback_url)
        )
        
        self._job_results[job_id] = [result]
    
    def _create_callback_task(self, job_id: str, callback_url: Optional[str]):
        """Create callback task for job completion."""
        if not callback_url:
            return None
        
        @celery_app.task
        def batch_completion_callback(results):
            # Update job status
            job_status = self._active_jobs.get(job_id)
            if job_status:
                job_status.completed_at = datetime.now()
                job_status.duration_seconds = (
                    job_status.completed_at - job_status.started_at
                ).total_seconds()
                job_status.status = "completed"
                job_status.results = results
            
            # Send callback
            import httpx
            with httpx.Client() as client:
                client.post(
                    callback_url,
                    json={
                        "job_id": job_id,
                        "status": "completed",
                        "results": results,
                        "completed_at": datetime.now().isoformat()
                    },
                    timeout=30.0
                )
        
        return batch_completion_callback.s()
    
    async def get_job_status(self, job_id: str) -> Optional[BatchJobStatus]:
        """
        Get batch job status.
        
        Args:
            job_id: Job ID
            
        Returns:
            Job status or None
        """
        job_status = self._active_jobs.get(job_id)
        if not job_status:
            return None
        
        # Update status from Celery results
        if job_id in self._job_results:
            results = self._job_results[job_id]
            completed = 0
            failed = 0
            
            for result in results:
                if result.ready():
                    if result.successful():
                        completed += 1
                    else:
                        failed += 1
            
            job_status.completed = completed
            job_status.failed = failed
            job_status.pending = job_status.total_items - completed - failed
            
            if job_status.pending == 0:
                job_status.status = "completed" if failed == 0 else "completed_with_errors"
                if not job_status.completed_at:
                    job_status.completed_at = datetime.now()
                    job_status.duration_seconds = (
                        job_status.completed_at - job_status.started_at
                    ).total_seconds()
        
        return job_status
    
    async def cancel_job(self, job_id: str) -> bool:
        """
        Cancel a batch job.
        
        Args:
            job_id: Job ID
            
        Returns:
            True if cancelled
        """
        if job_id not in self._job_results:
            return False
        
        # Revoke Celery tasks
        for result in self._job_results[job_id]:
            if not result.ready():
                result.revoke(terminate=True)
        
        # Update status
        job_status = self._active_jobs.get(job_id)
        if job_status:
            job_status.status = "cancelled"
            job_status.completed_at = datetime.now()
            job_status.duration_seconds = (
                job_status.completed_at - job_status.started_at
            ).total_seconds()
        
        logger.info("batch_job_cancelled", job_id=job_id)
        
        return True
    
    async def get_queue_stats(self) -> QueueStats:
        """Get queue statistics."""
        return await priority_queue.get_stats()
    
    async def cleanup_old_jobs(self, days: int = 7):
        """Clean up old completed jobs."""
        cutoff_time = datetime.now() - timedelta(days=days)
        
        jobs_to_remove = []
        for job_id, job_status in self._active_jobs.items():
            if (job_status.completed_at and 
                job_status.completed_at < cutoff_time):
                jobs_to_remove.append(job_id)
        
        for job_id in jobs_to_remove:
            del self._active_jobs[job_id]
            if job_id in self._job_results:
                del self._job_results[job_id]
        
        logger.info(
            "old_jobs_cleaned",
            removed=len(jobs_to_remove),
            remaining=len(self._active_jobs)
        )


# Global batch service instance
batch_service = BatchProcessingService()