File size: 21,231 Bytes
e29e8bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
"""
Module: services.database_optimization_service
Description: Database query optimization and index management
Author: Anderson H. Silva
Date: 2025-01-25
License: Proprietary - All rights reserved
"""
from typing import List, Dict, Any, Optional, Tuple
from datetime import datetime, timedelta, timezone
from sqlalchemy import text, create_engine, inspect
from sqlalchemy.ext.asyncio import AsyncSession
import asyncio
import time
from src.core import get_logger
from src.db.session import get_session
from src.core.config import settings
logger = get_logger(__name__)
class QueryAnalysis:
"""Analysis result for a database query."""
def __init__(self, query: str, execution_time: float, plan: Dict[str, Any]):
self.query = query
self.execution_time = execution_time
self.plan = plan
self.suggestions = []
self.estimated_improvement = 0.0
def add_suggestion(self, suggestion: str, improvement: float = 0.0):
"""Add optimization suggestion."""
self.suggestions.append(suggestion)
self.estimated_improvement += improvement
class DatabaseOptimizationService:
"""Service for database performance optimization."""
def __init__(self):
"""Initialize database optimization service."""
self._slow_query_threshold = 1.0 # seconds
self._index_suggestions = {}
self._query_stats = {}
async def analyze_slow_queries(
self,
session: AsyncSession,
limit: int = 20
) -> List[QueryAnalysis]:
"""Analyze slow queries from PostgreSQL."""
analyses = []
try:
# Get slow queries from pg_stat_statements
slow_queries_sql = """
SELECT
query,
mean_exec_time / 1000.0 as mean_exec_seconds,
calls,
total_exec_time / 1000.0 as total_exec_seconds,
min_exec_time / 1000.0 as min_exec_seconds,
max_exec_time / 1000.0 as max_exec_seconds,
rows
FROM pg_stat_statements
WHERE mean_exec_time > :threshold_ms
AND query NOT LIKE '%pg_stat%'
AND query NOT LIKE '%information_schema%'
ORDER BY mean_exec_time DESC
LIMIT :limit
"""
result = await session.execute(
text(slow_queries_sql),
{
"threshold_ms": self._slow_query_threshold * 1000,
"limit": limit
}
)
rows = result.fetchall()
for row in rows:
# Analyze each slow query
analysis = QueryAnalysis(
query=row.query,
execution_time=row.mean_exec_seconds,
plan={
"calls": row.calls,
"total_time": row.total_exec_seconds,
"min_time": row.min_exec_seconds,
"max_time": row.max_exec_seconds,
"rows": row.rows
}
)
# Get query plan
await self._analyze_query_plan(session, analysis)
# Generate suggestions
self._generate_suggestions(analysis)
analyses.append(analysis)
logger.info(
"slow_query_analysis_completed",
queries_analyzed=len(analyses)
)
except Exception as e:
logger.error(
"slow_query_analysis_error",
error=str(e),
exc_info=True
)
return analyses
async def _analyze_query_plan(
self,
session: AsyncSession,
analysis: QueryAnalysis
):
"""Analyze query execution plan."""
try:
# Get EXPLAIN ANALYZE for the query
explain_sql = f"EXPLAIN (ANALYZE, BUFFERS, FORMAT JSON) {analysis.query}"
result = await session.execute(text(explain_sql))
plan_data = result.scalar()
if plan_data:
analysis.plan["execution_plan"] = plan_data[0]["Plan"]
# Extract key metrics
plan = plan_data[0]["Plan"]
analysis.plan["total_cost"] = plan.get("Total Cost", 0)
analysis.plan["actual_time"] = plan.get("Actual Total Time", 0)
# Look for problematic patterns
self._check_plan_issues(plan, analysis)
except Exception as e:
logger.debug(f"Could not analyze plan for query: {e}")
def _check_plan_issues(self, plan: Dict[str, Any], analysis: QueryAnalysis):
"""Check for common plan issues."""
# Sequential scan on large tables
if plan.get("Node Type") == "Seq Scan":
rows = plan.get("Actual Rows", 0)
if rows > 1000:
analysis.add_suggestion(
f"Sequential scan on {rows} rows. Consider adding an index.",
improvement=0.5
)
# Nested loops with high iterations
if plan.get("Node Type") == "Nested Loop":
loops = plan.get("Actual Loops", 0)
if loops > 100:
analysis.add_suggestion(
f"Nested loop with {loops} iterations. Consider query restructuring.",
improvement=0.3
)
# Check child nodes recursively
if "Plans" in plan:
for child_plan in plan["Plans"]:
self._check_plan_issues(child_plan, analysis)
def _generate_suggestions(self, analysis: QueryAnalysis):
"""Generate optimization suggestions for a query."""
query_lower = analysis.query.lower()
# Check for missing LIMIT
if "select" in query_lower and "limit" not in query_lower:
if analysis.plan.get("rows", 0) > 1000:
analysis.add_suggestion(
"Query returns many rows. Consider adding LIMIT clause.",
improvement=0.2
)
# Check for SELECT *
if "select *" in query_lower:
analysis.add_suggestion(
"Avoid SELECT *. Specify only needed columns.",
improvement=0.1
)
# Check for missing WHERE on large tables
if "where" not in query_lower and analysis.plan.get("rows", 0) > 10000:
analysis.add_suggestion(
"No WHERE clause on large result set. Add filtering.",
improvement=0.4
)
# Check for IN with many values
import re
in_matches = re.findall(r'IN\s*\([^)]+\)', query_lower)
for match in in_matches:
values_count = match.count(',') + 1
if values_count > 10:
analysis.add_suggestion(
f"IN clause with {values_count} values. Consider using JOIN or temp table.",
improvement=0.2
)
async def create_missing_indexes(
self,
session: AsyncSession,
dry_run: bool = True
) -> List[Dict[str, Any]]:
"""Create missing indexes based on analysis."""
index_commands = []
try:
# Analyze foreign key columns without indexes
fk_index_sql = """
SELECT
tc.table_name,
kcu.column_name,
ccu.table_name AS foreign_table_name
FROM information_schema.table_constraints AS tc
JOIN information_schema.key_column_usage AS kcu
ON tc.constraint_name = kcu.constraint_name
JOIN information_schema.constraint_column_usage AS ccu
ON ccu.constraint_name = tc.constraint_name
WHERE tc.constraint_type = 'FOREIGN KEY'
AND NOT EXISTS (
SELECT 1
FROM pg_indexes
WHERE schemaname = 'public'
AND tablename = tc.table_name
AND indexdef LIKE '%' || kcu.column_name || '%'
)
"""
result = await session.execute(text(fk_index_sql))
fk_without_index = result.fetchall()
for row in fk_without_index:
index_name = f"idx_{row.table_name}_{row.column_name}"
index_cmd = f"CREATE INDEX {index_name} ON {row.table_name} ({row.column_name})"
index_commands.append({
"type": "foreign_key",
"table": row.table_name,
"column": row.column_name,
"command": index_cmd,
"reason": f"Foreign key to {row.foreign_table_name}"
})
# Analyze frequently filtered columns
filter_columns = await self._analyze_filter_columns(session)
for table, column, frequency in filter_columns:
# Check if index already exists
check_sql = """
SELECT 1 FROM pg_indexes
WHERE schemaname = 'public'
AND tablename = :table
AND indexdef LIKE :pattern
"""
exists = await session.execute(
text(check_sql),
{"table": table, "pattern": f"%{column}%"}
)
if not exists.scalar():
index_name = f"idx_{table}_{column}_filter"
index_cmd = f"CREATE INDEX {index_name} ON {table} ({column})"
index_commands.append({
"type": "frequent_filter",
"table": table,
"column": column,
"command": index_cmd,
"reason": f"Frequently used in WHERE clause ({frequency} times)"
})
# Execute or return commands
if not dry_run and index_commands:
for idx_info in index_commands:
try:
await session.execute(text(idx_info["command"]))
idx_info["status"] = "created"
logger.info(
"index_created",
table=idx_info["table"],
column=idx_info["column"]
)
except Exception as e:
idx_info["status"] = "failed"
idx_info["error"] = str(e)
logger.error(
"index_creation_failed",
table=idx_info["table"],
error=str(e)
)
await session.commit()
except Exception as e:
logger.error(
"create_indexes_error",
error=str(e),
exc_info=True
)
return index_commands
async def _analyze_filter_columns(
self,
session: AsyncSession
) -> List[Tuple[str, str, int]]:
"""Analyze frequently filtered columns from query patterns."""
filter_columns = []
try:
# Parse WHERE clauses from pg_stat_statements
filter_analysis_sql = """
SELECT
query,
calls
FROM pg_stat_statements
WHERE query LIKE '%WHERE%'
AND query NOT LIKE '%pg_stat%'
AND calls > 10
ORDER BY calls DESC
LIMIT 100
"""
result = await session.execute(text(filter_analysis_sql))
queries = result.fetchall()
# Simple pattern matching for WHERE conditions
import re
column_frequency = {}
for query, calls in queries:
# Extract table.column or column patterns after WHERE
where_match = re.search(r'WHERE\s+(.+?)(?:ORDER|GROUP|LIMIT|$)', query, re.IGNORECASE)
if where_match:
conditions = where_match.group(1)
# Find column references
column_patterns = re.findall(r'(\w+)\.(\w+)\s*[=<>]|(\w+)\s*[=<>]', conditions)
for pattern in column_patterns:
if pattern[0] and pattern[1]: # table.column format
key = (pattern[0], pattern[1])
elif pattern[2]: # column only format
# Try to infer table from FROM clause
from_match = re.search(r'FROM\s+(\w+)', query, re.IGNORECASE)
if from_match:
key = (from_match.group(1), pattern[2])
else:
continue
else:
continue
column_frequency[key] = column_frequency.get(key, 0) + calls
# Sort by frequency
for (table, column), frequency in sorted(
column_frequency.items(),
key=lambda x: x[1],
reverse=True
)[:20]:
filter_columns.append((table, column, frequency))
except Exception as e:
logger.error(
"filter_column_analysis_error",
error=str(e),
exc_info=True
)
return filter_columns
async def optimize_table_statistics(
self,
session: AsyncSession,
tables: Optional[List[str]] = None
) -> Dict[str, Any]:
"""Update table statistics for query planner."""
results = {
"analyzed": [],
"vacuumed": [],
"errors": []
}
try:
# Get all tables if not specified
if not tables:
tables_sql = """
SELECT tablename
FROM pg_tables
WHERE schemaname = 'public'
"""
result = await session.execute(text(tables_sql))
tables = [row[0] for row in result.fetchall()]
for table in tables:
try:
# ANALYZE table
await session.execute(text(f"ANALYZE {table}"))
results["analyzed"].append(table)
# Check if VACUUM needed
vacuum_check_sql = """
SELECT
n_dead_tup,
n_live_tup
FROM pg_stat_user_tables
WHERE relname = :table
"""
result = await session.execute(
text(vacuum_check_sql),
{"table": table}
)
row = result.fetchone()
if row and row.n_dead_tup > row.n_live_tup * 0.2:
# More than 20% dead tuples, vacuum needed
await session.execute(text(f"VACUUM ANALYZE {table}"))
results["vacuumed"].append(table)
logger.info(
"table_vacuumed",
table=table,
dead_tuples=row.n_dead_tup
)
except Exception as e:
results["errors"].append({
"table": table,
"error": str(e)
})
logger.error(
f"Failed to optimize table {table}: {e}"
)
await session.commit()
except Exception as e:
logger.error(
"table_optimization_error",
error=str(e),
exc_info=True
)
return results
async def get_database_stats(
self,
session: AsyncSession
) -> Dict[str, Any]:
"""Get comprehensive database statistics."""
stats = {}
try:
# Database size
size_sql = """
SELECT
pg_database_size(current_database()) as db_size,
pg_size_pretty(pg_database_size(current_database())) as db_size_pretty
"""
result = await session.execute(text(size_sql))
size_info = result.fetchone()
stats["database_size"] = {
"bytes": size_info.db_size,
"pretty": size_info.db_size_pretty
}
# Table sizes
table_sizes_sql = """
SELECT
schemaname,
tablename,
pg_total_relation_size(schemaname||'.'||tablename) as total_size,
pg_size_pretty(pg_total_relation_size(schemaname||'.'||tablename)) as size_pretty,
n_live_tup as row_count
FROM pg_tables
JOIN pg_stat_user_tables USING (schemaname, tablename)
WHERE schemaname = 'public'
ORDER BY pg_total_relation_size(schemaname||'.'||tablename) DESC
LIMIT 10
"""
result = await session.execute(text(table_sizes_sql))
stats["largest_tables"] = [
{
"table": row.tablename,
"size_bytes": row.total_size,
"size_pretty": row.size_pretty,
"row_count": row.row_count
}
for row in result.fetchall()
]
# Index usage
index_usage_sql = """
SELECT
schemaname,
tablename,
indexname,
idx_scan,
idx_tup_read,
idx_tup_fetch,
pg_size_pretty(pg_relation_size(indexrelid)) as index_size
FROM pg_stat_user_indexes
WHERE schemaname = 'public'
ORDER BY idx_scan
LIMIT 20
"""
result = await session.execute(text(index_usage_sql))
stats["least_used_indexes"] = [
{
"table": row.tablename,
"index": row.indexname,
"scans": row.idx_scan,
"size": row.index_size
}
for row in result.fetchall()
]
# Cache hit ratio
cache_sql = """
SELECT
sum(heap_blks_read) as heap_read,
sum(heap_blks_hit) as heap_hit,
sum(heap_blks_hit) / NULLIF(sum(heap_blks_hit) + sum(heap_blks_read), 0) as cache_hit_ratio
FROM pg_statio_user_tables
"""
result = await session.execute(text(cache_sql))
cache_info = result.fetchone()
stats["cache_hit_ratio"] = {
"ratio": float(cache_info.cache_hit_ratio or 0),
"heap_read": cache_info.heap_read,
"heap_hit": cache_info.heap_hit
}
# Connection stats
conn_sql = """
SELECT
count(*) as total_connections,
count(*) FILTER (WHERE state = 'active') as active_connections,
count(*) FILTER (WHERE state = 'idle') as idle_connections,
count(*) FILTER (WHERE state = 'idle in transaction') as idle_in_transaction
FROM pg_stat_activity
WHERE datname = current_database()
"""
result = await session.execute(text(conn_sql))
conn_info = result.fetchone()
stats["connections"] = {
"total": conn_info.total_connections,
"active": conn_info.active_connections,
"idle": conn_info.idle_connections,
"idle_in_transaction": conn_info.idle_in_transaction
}
except Exception as e:
logger.error(
"database_stats_error",
error=str(e),
exc_info=True
)
return stats
# Global instance
database_optimization_service = DatabaseOptimizationService() |