anderson-ufrj
refactor(performance): replace all json imports with json_utils
9730fbc
raw
history blame
35.3 kB
"""
Sistema de Cache Distribuído Avançado
Multi-layer caching com Redis Cluster, invalidação inteligente e otimizações de performance
"""
import asyncio
import logging
import time
import hashlib
from src.core import json_utils
import pickle
import gzip
from typing import Dict, List, Optional, Any, Union, Callable, Tuple
from datetime import datetime, timedelta
from contextlib import asynccontextmanager
from enum import Enum
import threading
from dataclasses import dataclass, field
import redis.asyncio as redis
from redis.asyncio.cluster import RedisCluster
import aiocache
from aiocache import cached, Cache
from aiocache.serializers import PickleSerializer, JsonSerializer
import msgpack
from pydantic import BaseModel, Field
import structlog
logger = structlog.get_logger(__name__)
class CacheLevel(Enum):
"""Níveis de cache"""
L1_MEMORY = "l1_memory" # In-process memory cache
L2_REDIS = "l2_redis" # Redis cache
L3_PERSISTENT = "l3_persistent" # Persistent storage
class CacheStrategy(Enum):
"""Estratégias de cache"""
LRU = "lru" # Least Recently Used
LFU = "lfu" # Least Frequently Used
TTL = "ttl" # Time To Live
WRITE_THROUGH = "write_through"
WRITE_BEHIND = "write_behind"
READ_THROUGH = "read_through"
class SerializationType(Enum):
"""Tipos de serialização"""
JSON = "json"
PICKLE = "pickle"
MSGPACK = "msgpack"
COMPRESSED = "compressed"
@dataclass
class CacheEntry:
"""Entrada do cache"""
key: str
value: Any
created_at: datetime = field(default_factory=datetime.utcnow)
last_accessed: datetime = field(default_factory=datetime.utcnow)
access_count: int = 0
ttl_seconds: Optional[int] = None
tags: List[str] = field(default_factory=list)
size_bytes: int = 0
hit_count: int = 0
miss_count: int = 0
class CacheConfig(BaseModel):
"""Configuração do sistema de cache"""
# Redis Cluster configuration
redis_nodes: List[Dict[str, Union[str, int]]] = [
{"host": "localhost", "port": 7000},
{"host": "localhost", "port": 7001},
{"host": "localhost", "port": 7002}
]
redis_password: Optional[str] = None
redis_db: int = 0
redis_decode_responses: bool = False # Keep False for binary data
# Cache sizes (in MB)
l1_cache_size_mb: int = 256
l2_cache_size_mb: int = 1024
# TTL defaults (seconds)
default_ttl: int = 3600
short_ttl: int = 300
medium_ttl: int = 1800
long_ttl: int = 86400
# Performance settings
compression_threshold: int = 1024 # Compress values > 1KB
max_value_size_mb: int = 10
batch_size: int = 100
pipeline_size: int = 50
# Eviction policies
l1_eviction_policy: CacheStrategy = CacheStrategy.LRU
l2_eviction_policy: CacheStrategy = CacheStrategy.LFU
# Monitoring
enable_metrics: bool = True
metrics_interval: int = 60
log_slow_operations: bool = True
slow_operation_threshold_ms: float = 100.0
# Serialization
default_serialization: SerializationType = SerializationType.MSGPACK
enable_compression: bool = True
class CacheMetrics:
"""Métricas do cache"""
def __init__(self):
self.hits: Dict[str, int] = {"l1": 0, "l2": 0, "l3": 0}
self.misses: Dict[str, int] = {"l1": 0, "l2": 0, "l3": 0}
self.sets: Dict[str, int] = {"l1": 0, "l2": 0, "l3": 0}
self.deletes: Dict[str, int] = {"l1": 0, "l2": 0, "l3": 0}
self.errors: Dict[str, int] = {"l1": 0, "l2": 0, "l3": 0}
self.response_times: Dict[str, List[float]] = {
"l1": [], "l2": [], "l3": []
}
self.memory_usage: Dict[str, int] = {"l1": 0, "l2": 0}
self.evictions: Dict[str, int] = {"l1": 0, "l2": 0}
self.start_time = time.time()
self._lock = threading.Lock()
def record_hit(self, level: str, response_time: float = 0.0):
with self._lock:
self.hits[level] += 1
if response_time > 0:
self.response_times[level].append(response_time)
# Keep only last 1000 measurements
if len(self.response_times[level]) > 1000:
self.response_times[level] = self.response_times[level][-1000:]
def record_miss(self, level: str):
with self._lock:
self.misses[level] += 1
def record_set(self, level: str):
with self._lock:
self.sets[level] += 1
def record_error(self, level: str):
with self._lock:
self.errors[level] += 1
def get_hit_rate(self, level: str) -> float:
total = self.hits[level] + self.misses[level]
return self.hits[level] / total if total > 0 else 0.0
def get_avg_response_time(self, level: str) -> float:
times = self.response_times[level]
return sum(times) / len(times) if times else 0.0
def get_summary(self) -> Dict[str, Any]:
uptime = time.time() - self.start_time
summary = {
"uptime_seconds": uptime,
"levels": {}
}
for level in ["l1", "l2", "l3"]:
summary["levels"][level] = {
"hits": self.hits[level],
"misses": self.misses[level],
"hit_rate": self.get_hit_rate(level),
"avg_response_time_ms": self.get_avg_response_time(level) * 1000,
"sets": self.sets[level],
"errors": self.errors[level]
}
return summary
class AdvancedCacheManager:
"""Gerenciador avançado de cache distribuído"""
def __init__(self, config: CacheConfig):
self.config = config
self.metrics = CacheMetrics()
# Cache layers
self.l1_cache: Optional[Cache] = None
self.l2_cache: Optional[Union[redis.Redis, RedisCluster]] = None
# Serializers
self.serializers = {
SerializationType.JSON: JsonSerializer(),
SerializationType.PICKLE: PickleSerializer(),
SerializationType.MSGPACK: self._msgpack_serializer(),
SerializationType.COMPRESSED: self._compressed_serializer()
}
# Cache entries tracking
self.l1_entries: Dict[str, CacheEntry] = {}
# Background tasks
self._metrics_task: Optional[asyncio.Task] = None
self._cleanup_task: Optional[asyncio.Task] = None
self._initialized = False
def _msgpack_serializer(self):
"""Serializer MsgPack customizado"""
class MsgPackSerializer:
def dumps(self, value):
return msgpack.packb(value, use_bin_type=True)
def loads(self, value):
return msgpack.unpackb(value, raw=False)
return MsgPackSerializer()
def _compressed_serializer(self):
"""Serializer com compressão"""
class CompressedSerializer:
def dumps(self, value):
# Use pickle then gzip
pickled = pickle.dumps(value)
return gzip.compress(pickled)
def loads(self, value):
# Decompress then unpickle
decompressed = gzip.decompress(value)
return pickle.loads(decompressed)
return CompressedSerializer()
async def initialize(self) -> bool:
"""Inicializar sistema de cache"""
try:
logger.info("Inicializando sistema de cache avançado...")
# Initialize L1 cache (memory)
await self._init_l1_cache()
# Initialize L2 cache (Redis)
await self._init_l2_cache()
# Start background tasks
await self._start_background_tasks()
self._initialized = True
logger.info("✅ Sistema de cache inicializado com sucesso")
return True
except Exception as e:
logger.error(f"❌ Falha na inicialização do cache: {e}")
return False
async def _init_l1_cache(self):
"""Inicializar cache L1 (memória)"""
self.l1_cache = Cache(
Cache.MEMORY,
ttl=self.config.default_ttl,
serializer=self.serializers[self.config.default_serialization]
)
logger.info(f"✅ Cache L1 inicializado ({self.config.l1_cache_size_mb}MB)")
async def _init_l2_cache(self):
"""Inicializar cache L2 (Redis)"""
try:
# Try Redis Cluster first
self.l2_cache = RedisCluster(
startup_nodes=self.config.redis_nodes,
password=self.config.redis_password,
decode_responses=self.config.redis_decode_responses,
skip_full_coverage_check=True,
health_check_interval=30,
socket_timeout=5.0,
socket_connect_timeout=5.0,
retry_on_timeout=True
)
# Test connection
await self.l2_cache.ping()
logger.info("✅ Redis Cluster conectado para cache L2")
except Exception as e:
logger.warning(f"⚠️ Redis Cluster falhou, usando Redis simples: {e}")
# Fallback to simple Redis
node = self.config.redis_nodes[0]
self.l2_cache = redis.Redis(
host=node["host"],
port=node["port"],
db=self.config.redis_db,
password=self.config.redis_password,
decode_responses=self.config.redis_decode_responses,
socket_timeout=5.0,
socket_connect_timeout=5.0,
retry_on_timeout=True
)
await self.l2_cache.ping()
logger.info("✅ Redis simples conectado para cache L2")
async def _start_background_tasks(self):
"""Iniciar tarefas de background"""
if self.config.enable_metrics:
self._metrics_task = asyncio.create_task(self._metrics_collection_loop())
self._cleanup_task = asyncio.create_task(self._cleanup_loop())
logger.info("✅ Tarefas de background iniciadas")
async def get(self,
key: str,
default: Any = None,
ttl: Optional[int] = None,
serialization: Optional[SerializationType] = None) -> Any:
"""Buscar valor do cache com fallback multi-layer"""
start_time = time.time()
try:
# Try L1 cache first
value = await self._get_from_l1(key)
if value is not None:
self.metrics.record_hit("l1", time.time() - start_time)
await self._update_access_stats(key)
return value
self.metrics.record_miss("l1")
# Try L2 cache
value = await self._get_from_l2(key, serialization)
if value is not None:
self.metrics.record_hit("l2", time.time() - start_time)
# Promote to L1
await self._set_to_l1(key, value, ttl)
await self._update_access_stats(key)
return value
self.metrics.record_miss("l2")
return default
except Exception as e:
logger.error(f"❌ Erro ao buscar {key}: {e}")
self.metrics.record_error("l2")
return default
async def set(self,
key: str,
value: Any,
ttl: Optional[int] = None,
tags: List[str] = None,
serialization: Optional[SerializationType] = None) -> bool:
"""Definir valor no cache"""
try:
ttl = ttl or self.config.default_ttl
tags = tags or []
serialization = serialization or self.config.default_serialization
# Calculate size
serialized_value = self._serialize_value(value, serialization)
size_bytes = len(serialized_value) if isinstance(serialized_value, bytes) else len(str(serialized_value))
# Check size limit
if size_bytes > self.config.max_value_size_mb * 1024 * 1024:
logger.warning(f"⚠️ Valor muito grande para cache: {size_bytes} bytes")
return False
# Set in both layers
success_l1 = await self._set_to_l1(key, value, ttl)
success_l2 = await self._set_to_l2(key, value, ttl, serialization)
# Track entry
self.l1_entries[key] = CacheEntry(
key=key,
value=value,
ttl_seconds=ttl,
tags=tags,
size_bytes=size_bytes
)
if success_l1:
self.metrics.record_set("l1")
if success_l2:
self.metrics.record_set("l2")
return success_l1 or success_l2
except Exception as e:
logger.error(f"❌ Erro ao definir {key}: {e}")
return False
async def delete(self, key: str) -> bool:
"""Deletar do cache"""
try:
success_l1 = await self._delete_from_l1(key)
success_l2 = await self._delete_from_l2(key)
# Remove from tracking
self.l1_entries.pop(key, None)
return success_l1 or success_l2
except Exception as e:
logger.error(f"❌ Erro ao deletar {key}: {e}")
return False
async def delete_by_tags(self, tags: List[str]) -> int:
"""Deletar entradas por tags"""
deleted_count = 0
# Find keys with matching tags
keys_to_delete = []
for key, entry in self.l1_entries.items():
if any(tag in entry.tags for tag in tags):
keys_to_delete.append(key)
# Delete found keys
for key in keys_to_delete:
if await self.delete(key):
deleted_count += 1
logger.info(f"✅ Deletadas {deleted_count} entradas por tags: {tags}")
return deleted_count
async def invalidate_pattern(self, pattern: str) -> int:
"""Invalidar chaves por padrão"""
try:
# Get keys matching pattern from L2
if isinstance(self.l2_cache, RedisCluster):
# For cluster, we need to scan all nodes
keys = []
for node in self.l2_cache.get_nodes():
node_keys = await node.keys(pattern)
keys.extend(node_keys)
else:
keys = await self.l2_cache.keys(pattern)
# Delete all matching keys
deleted_count = 0
if keys:
# Use pipeline for efficiency
pipe = self.l2_cache.pipeline()
for key in keys:
pipe.delete(key)
# Also delete from L1
await self._delete_from_l1(key.decode() if isinstance(key, bytes) else key)
await pipe.execute()
deleted_count = len(keys)
logger.info(f"✅ Invalidadas {deleted_count} chaves com padrão: {pattern}")
return deleted_count
except Exception as e:
logger.error(f"❌ Erro ao invalidar padrão {pattern}: {e}")
return 0
async def batch_get(self, keys: List[str]) -> Dict[str, Any]:
"""Buscar múltiplas chaves em lote"""
results = {}
# Split into chunks
chunk_size = self.config.batch_size
for i in range(0, len(keys), chunk_size):
chunk = keys[i:i + chunk_size]
# Try L1 first
l1_results = await self._batch_get_l1(chunk)
results.update(l1_results)
# Get missing keys from L2
missing_keys = [k for k in chunk if k not in l1_results]
if missing_keys:
l2_results = await self._batch_get_l2(missing_keys)
results.update(l2_results)
# Promote L2 hits to L1
for key, value in l2_results.items():
await self._set_to_l1(key, value)
return results
async def batch_set(self, items: Dict[str, Any], ttl: Optional[int] = None) -> int:
"""Definir múltiplas chaves em lote"""
success_count = 0
# Split into chunks
items_list = list(items.items())
chunk_size = self.config.batch_size
for i in range(0, len(items_list), chunk_size):
chunk = dict(items_list[i:i + chunk_size])
# Set in L1
l1_success = await self._batch_set_l1(chunk, ttl)
# Set in L2
l2_success = await self._batch_set_l2(chunk, ttl)
success_count += max(l1_success, l2_success)
return success_count
async def _get_from_l1(self, key: str) -> Any:
"""Buscar do cache L1"""
if self.l1_cache:
return await self.l1_cache.get(key)
return None
async def _get_from_l2(self, key: str, serialization: Optional[SerializationType] = None) -> Any:
"""Buscar do cache L2"""
if not self.l2_cache:
return None
try:
value = await self.l2_cache.get(key)
if value is None:
return None
# Deserialize
serialization = serialization or self.config.default_serialization
serializer = self.serializers[serialization]
return serializer.loads(value)
except Exception as e:
logger.error(f"❌ Erro ao deserializar {key}: {e}")
return None
async def _set_to_l1(self, key: str, value: Any, ttl: Optional[int] = None) -> bool:
"""Definir no cache L1"""
if self.l1_cache:
try:
await self.l1_cache.set(key, value, ttl=ttl)
return True
except Exception as e:
logger.error(f"❌ Erro L1 set {key}: {e}")
return False
async def _set_to_l2(self, key: str, value: Any, ttl: Optional[int] = None,
serialization: Optional[SerializationType] = None) -> bool:
"""Definir no cache L2"""
if not self.l2_cache:
return False
try:
# Serialize
serialization = serialization or self.config.default_serialization
serializer = self.serializers[serialization]
serialized_value = serializer.dumps(value)
# Compress if needed
if (self.config.enable_compression and
len(serialized_value) > self.config.compression_threshold):
serialized_value = gzip.compress(serialized_value)
key = f"compressed:{key}"
# Set with TTL
ttl = ttl or self.config.default_ttl
await self.l2_cache.setex(key, ttl, serialized_value)
return True
except Exception as e:
logger.error(f"❌ Erro L2 set {key}: {e}")
return False
async def _delete_from_l1(self, key: str) -> bool:
"""Deletar do cache L1"""
if self.l1_cache:
try:
return await self.l1_cache.delete(key)
except Exception:
pass
return False
async def _delete_from_l2(self, key: str) -> bool:
"""Deletar do cache L2"""
if self.l2_cache:
try:
result = await self.l2_cache.delete(key)
# Also try compressed version
await self.l2_cache.delete(f"compressed:{key}")
return result > 0
except Exception:
pass
return False
async def _batch_get_l1(self, keys: List[str]) -> Dict[str, Any]:
"""Buscar lote do L1"""
results = {}
if self.l1_cache:
for key in keys:
value = await self._get_from_l1(key)
if value is not None:
results[key] = value
return results
async def _batch_get_l2(self, keys: List[str]) -> Dict[str, Any]:
"""Buscar lote do L2"""
results = {}
if not self.l2_cache or not keys:
return results
try:
# Use pipeline for efficiency
pipe = self.l2_cache.pipeline()
for key in keys:
pipe.get(key)
pipe.get(f"compressed:{key}") # Also check compressed version
values = await pipe.execute()
# Process results
for i, key in enumerate(keys):
value = values[i * 2] # Regular value
compressed_value = values[i * 2 + 1] # Compressed value
if compressed_value:
# Decompress and deserialize
try:
decompressed = gzip.decompress(compressed_value)
serializer = self.serializers[self.config.default_serialization]
results[key] = serializer.loads(decompressed)
except Exception:
pass
elif value:
# Regular deserialize
try:
serializer = self.serializers[self.config.default_serialization]
results[key] = serializer.loads(value)
except Exception:
pass
except Exception as e:
logger.error(f"❌ Erro batch get L2: {e}")
return results
async def _batch_set_l1(self, items: Dict[str, Any], ttl: Optional[int] = None) -> int:
"""Definir lote no L1"""
success_count = 0
for key, value in items.items():
if await self._set_to_l1(key, value, ttl):
success_count += 1
return success_count
async def _batch_set_l2(self, items: Dict[str, Any], ttl: Optional[int] = None) -> int:
"""Definir lote no L2"""
if not self.l2_cache or not items:
return 0
try:
# Use pipeline for efficiency
pipe = self.l2_cache.pipeline()
ttl = ttl or self.config.default_ttl
serializer = self.serializers[self.config.default_serialization]
for key, value in items.items():
try:
serialized_value = serializer.dumps(value)
# Compress if needed
if (self.config.enable_compression and
len(serialized_value) > self.config.compression_threshold):
serialized_value = gzip.compress(serialized_value)
key = f"compressed:{key}"
pipe.setex(key, ttl, serialized_value)
except Exception as e:
logger.error(f"❌ Erro ao serializar {key}: {e}")
results = await pipe.execute()
return sum(1 for result in results if result)
except Exception as e:
logger.error(f"❌ Erro batch set L2: {e}")
return 0
def _serialize_value(self, value: Any, serialization: SerializationType) -> bytes:
"""Serializar valor"""
serializer = self.serializers[serialization]
return serializer.dumps(value)
async def _update_access_stats(self, key: str):
"""Atualizar estatísticas de acesso"""
if key in self.l1_entries:
entry = self.l1_entries[key]
entry.last_accessed = datetime.utcnow()
entry.access_count += 1
entry.hit_count += 1
async def _metrics_collection_loop(self):
"""Loop de coleta de métricas"""
while True:
try:
await asyncio.sleep(self.config.metrics_interval)
# Log metrics summary
summary = self.metrics.get_summary()
logger.info(f"📊 Cache metrics: {summary}")
# Could send to monitoring system here
except Exception as e:
logger.error(f"❌ Erro na coleta de métricas: {e}")
await asyncio.sleep(5)
async def _cleanup_loop(self):
"""Loop de limpeza"""
while True:
try:
await asyncio.sleep(300) # Run every 5 minutes
# Clean up expired entries from tracking
now = datetime.utcnow()
expired_keys = []
for key, entry in self.l1_entries.items():
if entry.ttl_seconds:
expiry = entry.created_at + timedelta(seconds=entry.ttl_seconds)
if now > expiry:
expired_keys.append(key)
for key in expired_keys:
del self.l1_entries[key]
if expired_keys:
logger.info(f"🧹 Limpeza: removidas {len(expired_keys)} entradas expiradas")
except Exception as e:
logger.error(f"❌ Erro na limpeza: {e}")
await asyncio.sleep(30)
async def get_stats(self) -> Dict[str, Any]:
"""Obter estatísticas completas do cache"""
# Basic metrics
stats = self.metrics.get_summary()
# L1 cache stats
l1_size = len(self.l1_entries)
l1_memory_usage = sum(entry.size_bytes for entry in self.l1_entries.values())
stats["l1_cache"] = {
"entries": l1_size,
"memory_usage_bytes": l1_memory_usage,
"memory_usage_mb": l1_memory_usage / (1024 * 1024)
}
# L2 cache stats
if self.l2_cache:
try:
if isinstance(self.l2_cache, RedisCluster):
# Get stats from all nodes
l2_info = {}
for node in self.l2_cache.get_nodes():
node_info = await node.info()
for key, value in node_info.items():
if key not in l2_info:
l2_info[key] = 0
if isinstance(value, (int, float)):
l2_info[key] += value
else:
l2_info = await self.l2_cache.info()
stats["l2_cache"] = {
"connected_clients": l2_info.get("connected_clients", 0),
"used_memory": l2_info.get("used_memory", 0),
"used_memory_human": l2_info.get("used_memory_human", "0B"),
"keyspace_hits": l2_info.get("keyspace_hits", 0),
"keyspace_misses": l2_info.get("keyspace_misses", 0)
}
except Exception as e:
logger.error(f"❌ Erro ao obter stats L2: {e}")
stats["l2_cache"] = {"error": str(e)}
return stats
async def warm_up(self, data: Dict[str, Any], ttl: Optional[int] = None):
"""Pré-carregar cache com dados"""
logger.info(f"🔥 Aquecendo cache com {len(data)} entradas...")
success_count = await self.batch_set(data, ttl)
logger.info(f"✅ Cache aquecido: {success_count}/{len(data)} entradas")
async def health_check(self) -> Dict[str, Any]:
"""Health check do sistema de cache"""
health = {
"l1_cache": {"status": "unknown"},
"l2_cache": {"status": "unknown"},
"overall": {"status": "unknown"}
}
# Test L1
try:
test_key = f"health_check_{int(time.time())}"
await self._set_to_l1(test_key, "test", 5)
value = await self._get_from_l1(test_key)
await self._delete_from_l1(test_key)
health["l1_cache"] = {
"status": "healthy" if value == "test" else "degraded"
}
except Exception as e:
health["l1_cache"] = {
"status": "unhealthy",
"error": str(e)
}
# Test L2
try:
test_key = f"health_check_{int(time.time())}"
await self._set_to_l2(test_key, "test", 5)
value = await self._get_from_l2(test_key)
await self._delete_from_l2(test_key)
health["l2_cache"] = {
"status": "healthy" if value == "test" else "degraded"
}
except Exception as e:
health["l2_cache"] = {
"status": "unhealthy",
"error": str(e)
}
# Overall status
l1_healthy = health["l1_cache"]["status"] == "healthy"
l2_healthy = health["l2_cache"]["status"] == "healthy"
if l1_healthy and l2_healthy:
health["overall"]["status"] = "healthy"
elif l1_healthy or l2_healthy:
health["overall"]["status"] = "degraded"
else:
health["overall"]["status"] = "unhealthy"
return health
async def cleanup(self):
"""Cleanup de recursos"""
try:
# Cancel background tasks
if self._metrics_task:
self._metrics_task.cancel()
if self._cleanup_task:
self._cleanup_task.cancel()
# Close connections
if self.l2_cache:
await self.l2_cache.close()
logger.info("✅ Cleanup do sistema de cache concluído")
except Exception as e:
logger.error(f"❌ Erro no cleanup: {e}")
# Decorators for caching
def cached_result(ttl: int = 3600, key_prefix: str = "", tags: List[str] = None):
"""Decorator para cache automático de resultados de função"""
def decorator(func):
async def wrapper(*args, **kwargs):
# Generate cache key
key_parts = [key_prefix, func.__name__]
if args:
key_parts.append(hashlib.md5(str(args).encode()).hexdigest()[:8])
if kwargs:
key_parts.append(hashlib.md5(str(sorted(kwargs.items())).encode()).hexdigest()[:8])
cache_key = ":".join(filter(None, key_parts))
# Try to get from cache
cache_manager = await get_cache_manager()
result = await cache_manager.get(cache_key)
if result is not None:
return result
# Execute function
if asyncio.iscoroutinefunction(func):
result = await func(*args, **kwargs)
else:
result = func(*args, **kwargs)
# Store in cache
await cache_manager.set(cache_key, result, ttl, tags or [])
return result
return wrapper
return decorator
# Singleton instance
_cache_manager: Optional[AdvancedCacheManager] = None
async def get_cache_manager() -> AdvancedCacheManager:
"""Obter instância singleton do cache manager"""
global _cache_manager
if _cache_manager is None or not _cache_manager._initialized:
config = CacheConfig()
_cache_manager = AdvancedCacheManager(config)
await _cache_manager.initialize()
return _cache_manager
async def cleanup_cache():
"""Cleanup global do sistema de cache"""
global _cache_manager
if _cache_manager:
await _cache_manager.cleanup()
_cache_manager = None
if __name__ == "__main__":
# Teste do sistema
import asyncio
async def test_cache_system():
"""Teste completo do sistema de cache"""
print("🧪 Testando sistema de cache avançado...")
# Get cache manager
cache = await get_cache_manager()
# Test basic operations
await cache.set("test_key", {"data": "test_value", "number": 42}, ttl=60)
result = await cache.get("test_key")
print(f"✅ Set/Get: {result}")
# Test batch operations
batch_data = {f"key_{i}": f"value_{i}" for i in range(10)}
await cache.batch_set(batch_data, ttl=30)
batch_results = await cache.batch_get(list(batch_data.keys()))
print(f"✅ Batch operations: {len(batch_results)} items")
# Test with compression
large_data = {"large_payload": "x" * 2000} # Triggers compression
await cache.set("large_key", large_data, ttl=60)
large_result = await cache.get("large_key")
print(f"✅ Compression: {len(large_result['large_payload'])} chars")
# Test cache stats
stats = await cache.get_stats()
print(f"✅ Stats: L1 hit rate = {stats['levels']['l1']['hit_rate']:.2%}")
# Test health check
health = await cache.health_check()
print(f"✅ Health: {health['overall']['status']}")
# Test decorator
@cached_result(ttl=30, key_prefix="test_func")
async def expensive_operation(x: int, y: int) -> int:
await asyncio.sleep(0.1) # Simulate expensive operation
return x * y
# First call (cache miss)
start_time = time.time()
result1 = await expensive_operation(5, 10)
time1 = time.time() - start_time
# Second call (cache hit)
start_time = time.time()
result2 = await expensive_operation(5, 10)
time2 = time.time() - start_time
print(f"✅ Decorator: {result1} == {result2}, time1: {time1:.3f}s, time2: {time2:.3f}s")
# Cleanup
await cleanup_cache()
print("✅ Teste concluído!")
asyncio.run(test_cache_system())