|
|
""" |
|
|
Module: agents.bonifacio_agent |
|
|
Description: José Bonifácio - Public Policy Agent specialized in analyzing policy effectiveness |
|
|
Author: Anderson H. Silva |
|
|
Date: 2025-01-24 |
|
|
License: Proprietary - All rights reserved |
|
|
""" |
|
|
|
|
|
import asyncio |
|
|
import hashlib |
|
|
from datetime import datetime, timedelta |
|
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
from dataclasses import dataclass |
|
|
from enum import Enum |
|
|
import statistics |
|
|
|
|
|
import numpy as np |
|
|
import pandas as pd |
|
|
from pydantic import BaseModel, Field as PydanticField |
|
|
|
|
|
from src.agents.deodoro import BaseAgent, AgentContext, AgentMessage, AgentResponse |
|
|
from src.core import get_logger |
|
|
from src.core.exceptions import AgentExecutionError, DataAnalysisError |
|
|
|
|
|
|
|
|
class PolicyStatus(Enum): |
|
|
"""Status of policy analysis.""" |
|
|
ACTIVE = "active" |
|
|
INACTIVE = "inactive" |
|
|
UNDER_REVIEW = "under_review" |
|
|
DISCONTINUED = "discontinued" |
|
|
PLANNED = "planned" |
|
|
|
|
|
|
|
|
class ImpactLevel(Enum): |
|
|
"""Impact level classification.""" |
|
|
VERY_LOW = "very_low" |
|
|
LOW = "low" |
|
|
MEDIUM = "medium" |
|
|
HIGH = "high" |
|
|
VERY_HIGH = "very_high" |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class PolicyIndicator: |
|
|
"""Policy performance indicator.""" |
|
|
|
|
|
name: str |
|
|
baseline_value: float |
|
|
current_value: float |
|
|
target_value: float |
|
|
unit: str |
|
|
data_source: str |
|
|
last_update: datetime |
|
|
statistical_significance: float |
|
|
trend: str |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class PolicyEvaluation: |
|
|
"""Comprehensive policy evaluation result.""" |
|
|
|
|
|
policy_id: str |
|
|
policy_name: str |
|
|
analysis_period: Tuple[datetime, datetime] |
|
|
status: PolicyStatus |
|
|
investment: Dict[str, float] |
|
|
beneficiaries: Dict[str, Any] |
|
|
indicators: List[PolicyIndicator] |
|
|
effectiveness_score: Dict[str, float] |
|
|
roi_social: float |
|
|
sustainability_score: int |
|
|
impact_level: ImpactLevel |
|
|
recommendations: List[Dict[str, Any]] |
|
|
evidence_sources: List[str] |
|
|
analysis_confidence: float |
|
|
hash_verification: str |
|
|
|
|
|
|
|
|
class PolicyAnalysisRequest(BaseModel): |
|
|
"""Request for public policy analysis.""" |
|
|
|
|
|
policy_name: str = PydanticField(description="Name or description of the policy") |
|
|
policy_area: Optional[str] = PydanticField(default=None, description="Policy area (health, education, security, etc)") |
|
|
geographical_scope: Optional[str] = PydanticField(default=None, description="Geographic scope (municipal, state, federal)") |
|
|
analysis_period: Optional[Tuple[str, str]] = PydanticField(default=None, description="Analysis period (start, end)") |
|
|
budget_data: Optional[Dict[str, float]] = PydanticField(default=None, description="Budget information") |
|
|
target_indicators: Optional[List[str]] = PydanticField(default=None, description="Specific indicators to analyze") |
|
|
comparison_policies: Optional[List[str]] = PydanticField(default=None, description="Other policies to compare with") |
|
|
benchmarking_scope: str = PydanticField(default="national", description="Benchmarking scope") |
|
|
|
|
|
|
|
|
class BonifacioAgent(BaseAgent): |
|
|
""" |
|
|
José Bonifácio - Public Policy Agent |
|
|
|
|
|
Specialized in analyzing public policy effectiveness, efficiency, and impact. |
|
|
Evaluates institutional reforms and measures social return on investment. |
|
|
Inspired by José Bonifácio de Andrada e Silva, the "Patriarch of Independence" |
|
|
and architect of Brazilian institutional foundations. |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
name="bonifacio", |
|
|
description="Public Policy Agent specialized in analyzing policy effectiveness and institutional reforms", |
|
|
capabilities=[ |
|
|
"policy_effectiveness_analysis", |
|
|
"institutional_reform_evaluation", |
|
|
"social_roi_calculation", |
|
|
"policy_impact_assessment", |
|
|
"benchmarking_analysis", |
|
|
"cost_benefit_analysis", |
|
|
"stakeholder_impact_mapping", |
|
|
"policy_sustainability_scoring", |
|
|
"implementation_gap_analysis", |
|
|
"evidence_based_recommendations", |
|
|
"statistical_significance_testing", |
|
|
"longitudinal_policy_tracking", |
|
|
"comparative_policy_analysis", |
|
|
"resource_allocation_optimization" |
|
|
] |
|
|
) |
|
|
self.logger = get_logger("agent.bonifacio") |
|
|
|
|
|
|
|
|
self._evaluation_frameworks = { |
|
|
"logic_model": self._apply_logic_model_framework, |
|
|
"results_chain": self._apply_results_chain_framework, |
|
|
"theory_of_change": self._apply_theory_of_change_framework, |
|
|
"cost_effectiveness": self._apply_cost_effectiveness_framework |
|
|
} |
|
|
|
|
|
|
|
|
self._data_sources = [ |
|
|
"Portal da Transparência", "TCU", "CGU", "IBGE", |
|
|
"IPEA", "DataSUS", "INEP", "SIAFI", "SICONV", |
|
|
"Tesouro Nacional", "CAPES", "CNJ", "CNMP" |
|
|
] |
|
|
|
|
|
|
|
|
self._policy_indicators = { |
|
|
"education": ["literacy_rate", "school_completion", "pisa_scores", "teacher_quality"], |
|
|
"health": ["mortality_rate", "vaccination_coverage", "hospital_capacity", "health_expenditure"], |
|
|
"security": ["crime_rate", "homicide_rate", "police_effectiveness", "prison_population"], |
|
|
"social": ["poverty_rate", "inequality_index", "employment_rate", "social_mobility"], |
|
|
"infrastructure": ["road_quality", "internet_access", "urban_mobility", "housing_deficit"], |
|
|
"environment": ["deforestation_rate", "air_quality", "water_quality", "renewable_energy"] |
|
|
} |
|
|
|
|
|
async def process( |
|
|
self, |
|
|
message: AgentMessage, |
|
|
context: AgentContext, |
|
|
) -> AgentResponse: |
|
|
""" |
|
|
Process public policy analysis request. |
|
|
|
|
|
Args: |
|
|
message: Policy analysis request |
|
|
context: Agent execution context |
|
|
|
|
|
Returns: |
|
|
Comprehensive policy evaluation results |
|
|
""" |
|
|
try: |
|
|
self.logger.info( |
|
|
"Processing policy analysis request", |
|
|
investigation_id=context.investigation_id, |
|
|
message_type=message.type, |
|
|
) |
|
|
|
|
|
|
|
|
if isinstance(message.data, dict): |
|
|
request = PolicyAnalysisRequest(**message.data) |
|
|
else: |
|
|
request = PolicyAnalysisRequest(policy_name=str(message.data)) |
|
|
|
|
|
|
|
|
evaluation = await self._evaluate_policy(request, context) |
|
|
|
|
|
|
|
|
strategic_recommendations = await self._generate_strategic_recommendations( |
|
|
evaluation, request, context |
|
|
) |
|
|
|
|
|
|
|
|
benchmarking = await self._perform_benchmarking_analysis( |
|
|
evaluation, request |
|
|
) |
|
|
|
|
|
response_data = { |
|
|
"policy_id": evaluation.policy_id, |
|
|
"timestamp": datetime.utcnow().isoformat(), |
|
|
"agent": "bonifacio", |
|
|
"analysis_type": "policy_effectiveness", |
|
|
"policy_evaluation": { |
|
|
"policy_name": evaluation.policy_name, |
|
|
"status": evaluation.status.value, |
|
|
"investment": evaluation.investment, |
|
|
"beneficiaries": evaluation.beneficiaries, |
|
|
"effectiveness_scores": evaluation.effectiveness_score, |
|
|
"roi_social": evaluation.roi_social, |
|
|
"sustainability_score": evaluation.sustainability_score, |
|
|
"impact_level": evaluation.impact_level.value, |
|
|
"analysis_confidence": evaluation.analysis_confidence |
|
|
}, |
|
|
"indicators": [ |
|
|
{ |
|
|
"name": ind.name, |
|
|
"baseline": ind.baseline_value, |
|
|
"current": ind.current_value, |
|
|
"target": ind.target_value, |
|
|
"performance_ratio": ind.current_value / ind.baseline_value if ind.baseline_value != 0 else 1.0, |
|
|
"goal_achievement": (ind.current_value / ind.target_value * 100) if ind.target_value != 0 else 0, |
|
|
"trend": ind.trend, |
|
|
"significance": ind.statistical_significance |
|
|
} |
|
|
for ind in evaluation.indicators |
|
|
], |
|
|
"strategic_recommendations": strategic_recommendations, |
|
|
"benchmarking": benchmarking, |
|
|
"evidence_sources": evaluation.evidence_sources, |
|
|
"hash_verification": evaluation.hash_verification |
|
|
} |
|
|
|
|
|
self.logger.info( |
|
|
"Policy analysis completed", |
|
|
investigation_id=context.investigation_id, |
|
|
policy_name=evaluation.policy_name, |
|
|
effectiveness_score=evaluation.effectiveness_score.get("effectiveness", 0), |
|
|
impact_level=evaluation.impact_level.value, |
|
|
) |
|
|
|
|
|
return AgentResponse( |
|
|
agent_name=self.name, |
|
|
response_type="policy_analysis", |
|
|
data=response_data, |
|
|
success=True, |
|
|
context=context, |
|
|
) |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error( |
|
|
"Policy analysis failed", |
|
|
investigation_id=context.investigation_id, |
|
|
error=str(e), |
|
|
exc_info=True, |
|
|
) |
|
|
|
|
|
return AgentResponse( |
|
|
agent_name=self.name, |
|
|
response_type="error", |
|
|
data={"error": str(e), "analysis_type": "policy_effectiveness"}, |
|
|
success=False, |
|
|
context=context, |
|
|
) |
|
|
|
|
|
async def _evaluate_policy( |
|
|
self, |
|
|
request: PolicyAnalysisRequest, |
|
|
context: AgentContext |
|
|
) -> PolicyEvaluation: |
|
|
"""Perform comprehensive policy evaluation.""" |
|
|
|
|
|
self.logger.info( |
|
|
"Starting policy evaluation", |
|
|
policy_name=request.policy_name, |
|
|
policy_area=request.policy_area, |
|
|
) |
|
|
|
|
|
|
|
|
policy_id = hashlib.md5( |
|
|
f"{request.policy_name}{request.policy_area}".encode() |
|
|
).hexdigest()[:12] |
|
|
|
|
|
|
|
|
await asyncio.sleep(3) |
|
|
|
|
|
|
|
|
if request.analysis_period: |
|
|
period_start = datetime.strptime(request.analysis_period[0], "%Y-%m-%d") |
|
|
period_end = datetime.strptime(request.analysis_period[1], "%Y-%m-%d") |
|
|
else: |
|
|
period_end = datetime.utcnow() |
|
|
period_start = period_end - timedelta(days=365) |
|
|
|
|
|
|
|
|
investment_data = await self._analyze_investment_data(request, context) |
|
|
|
|
|
|
|
|
beneficiary_data = await self._analyze_beneficiaries(request, context) |
|
|
|
|
|
|
|
|
indicators = await self._evaluate_policy_indicators(request, context) |
|
|
|
|
|
|
|
|
effectiveness_scores = await self._calculate_effectiveness_scores( |
|
|
investment_data, beneficiary_data, indicators |
|
|
) |
|
|
|
|
|
|
|
|
social_roi = await self._calculate_social_roi( |
|
|
investment_data, beneficiary_data, indicators |
|
|
) |
|
|
|
|
|
|
|
|
sustainability_score = await self._assess_policy_sustainability( |
|
|
request, investment_data, indicators |
|
|
) |
|
|
|
|
|
|
|
|
impact_level = self._classify_impact_level(effectiveness_scores, social_roi) |
|
|
|
|
|
|
|
|
evidence_hash = self._generate_evidence_hash( |
|
|
policy_id, investment_data, beneficiary_data, indicators |
|
|
) |
|
|
|
|
|
return PolicyEvaluation( |
|
|
policy_id=policy_id, |
|
|
policy_name=request.policy_name, |
|
|
analysis_period=(period_start, period_end), |
|
|
status=PolicyStatus.ACTIVE, |
|
|
investment=investment_data, |
|
|
beneficiaries=beneficiary_data, |
|
|
indicators=indicators, |
|
|
effectiveness_score=effectiveness_scores, |
|
|
roi_social=social_roi, |
|
|
sustainability_score=sustainability_score, |
|
|
impact_level=impact_level, |
|
|
recommendations=[], |
|
|
evidence_sources=self._data_sources, |
|
|
analysis_confidence=0.82, |
|
|
hash_verification=evidence_hash |
|
|
) |
|
|
|
|
|
async def _analyze_investment_data( |
|
|
self, |
|
|
request: PolicyAnalysisRequest, |
|
|
context: AgentContext |
|
|
) -> Dict[str, float]: |
|
|
"""Analyze policy investment and budget execution.""" |
|
|
|
|
|
|
|
|
if request.budget_data: |
|
|
planned = request.budget_data.get("planned", 0) |
|
|
executed = request.budget_data.get("executed", 0) |
|
|
else: |
|
|
|
|
|
planned = np.random.uniform(10_000_000, 500_000_000) |
|
|
executed = planned * np.random.uniform(0.7, 1.2) |
|
|
|
|
|
deviation = ((executed - planned) / planned) * 100 if planned > 0 else 0 |
|
|
|
|
|
return { |
|
|
"planned": planned, |
|
|
"executed": executed, |
|
|
"deviation_percentage": deviation, |
|
|
"cost_per_beneficiary": executed / max(1, np.random.randint(1000, 100000)) |
|
|
} |
|
|
|
|
|
async def _analyze_beneficiaries( |
|
|
self, |
|
|
request: PolicyAnalysisRequest, |
|
|
context: AgentContext |
|
|
) -> Dict[str, Any]: |
|
|
"""Analyze policy beneficiaries and coverage.""" |
|
|
|
|
|
|
|
|
target_population = np.random.randint(10000, 1000000) |
|
|
reached_population = int(target_population * np.random.uniform(0.6, 1.1)) |
|
|
coverage_rate = (reached_population / target_population) * 100 |
|
|
|
|
|
return { |
|
|
"target_population": target_population, |
|
|
"reached_population": reached_population, |
|
|
"coverage_rate": coverage_rate, |
|
|
"demographic_breakdown": { |
|
|
"urban": reached_population * 0.7, |
|
|
"rural": reached_population * 0.3, |
|
|
"vulnerable_groups": reached_population * 0.4 |
|
|
} |
|
|
} |
|
|
|
|
|
async def _evaluate_policy_indicators( |
|
|
self, |
|
|
request: PolicyAnalysisRequest, |
|
|
context: AgentContext |
|
|
) -> List[PolicyIndicator]: |
|
|
"""Evaluate key policy performance indicators.""" |
|
|
|
|
|
indicators = [] |
|
|
|
|
|
|
|
|
policy_area = request.policy_area or "social" |
|
|
relevant_indicators = self._policy_indicators.get(policy_area, ["generic_outcome"]) |
|
|
|
|
|
for indicator_name in relevant_indicators[:5]: |
|
|
baseline = np.random.uniform(10, 100) |
|
|
current = baseline * np.random.uniform(0.8, 1.4) |
|
|
target = baseline * np.random.uniform(1.1, 1.5) |
|
|
|
|
|
|
|
|
if current > baseline * 1.05: |
|
|
trend = "improving" |
|
|
elif current < baseline * 0.95: |
|
|
trend = "deteriorating" |
|
|
else: |
|
|
trend = "stable" |
|
|
|
|
|
indicators.append(PolicyIndicator( |
|
|
name=indicator_name, |
|
|
baseline_value=baseline, |
|
|
current_value=current, |
|
|
target_value=target, |
|
|
unit="rate" if "rate" in indicator_name else "index", |
|
|
data_source=np.random.choice(self._data_sources[:5]), |
|
|
last_update=datetime.utcnow() - timedelta(days=np.random.randint(1, 90)), |
|
|
statistical_significance=np.random.uniform(0.7, 0.95), |
|
|
trend=trend |
|
|
)) |
|
|
|
|
|
return indicators |
|
|
|
|
|
async def _calculate_effectiveness_scores( |
|
|
self, |
|
|
investment: Dict[str, float], |
|
|
beneficiaries: Dict[str, Any], |
|
|
indicators: List[PolicyIndicator] |
|
|
) -> Dict[str, float]: |
|
|
"""Calculate efficacy, efficiency, and effectiveness scores.""" |
|
|
|
|
|
|
|
|
target_achievements = [] |
|
|
for ind in indicators: |
|
|
if ind.target_value > 0: |
|
|
achievement = min(1.0, ind.current_value / ind.target_value) |
|
|
target_achievements.append(achievement) |
|
|
|
|
|
efficacy = statistics.mean(target_achievements) if target_achievements else 0.5 |
|
|
|
|
|
|
|
|
budget_efficiency = 1.0 - abs(investment["deviation_percentage"]) / 100 |
|
|
budget_efficiency = max(0.0, min(1.0, budget_efficiency)) |
|
|
|
|
|
coverage_efficiency = min(1.0, beneficiaries["coverage_rate"] / 100) |
|
|
|
|
|
efficiency = (budget_efficiency + coverage_efficiency) / 2 |
|
|
|
|
|
|
|
|
cost_effectiveness = efficacy / (investment["cost_per_beneficiary"] / 1000) if investment["cost_per_beneficiary"] > 0 else 0 |
|
|
cost_effectiveness = min(1.0, cost_effectiveness) |
|
|
|
|
|
effectiveness = (efficacy * 0.4 + efficiency * 0.3 + cost_effectiveness * 0.3) |
|
|
|
|
|
return { |
|
|
"efficacy": round(efficacy, 3), |
|
|
"efficiency": round(efficiency, 3), |
|
|
"effectiveness": round(effectiveness, 3), |
|
|
"cost_effectiveness": round(cost_effectiveness, 3) |
|
|
} |
|
|
|
|
|
async def _calculate_social_roi( |
|
|
self, |
|
|
investment: Dict[str, float], |
|
|
beneficiaries: Dict[str, Any], |
|
|
indicators: List[PolicyIndicator] |
|
|
) -> float: |
|
|
"""Calculate Social Return on Investment.""" |
|
|
|
|
|
|
|
|
total_investment = investment["executed"] |
|
|
|
|
|
|
|
|
social_benefits = 0 |
|
|
for ind in indicators: |
|
|
improvement = max(0, ind.current_value - ind.baseline_value) |
|
|
|
|
|
benefit_per_unit = np.random.uniform(100, 1000) |
|
|
social_benefits += improvement * benefit_per_unit * beneficiaries["reached_population"] |
|
|
|
|
|
|
|
|
if total_investment > 0: |
|
|
social_roi = (social_benefits - total_investment) / total_investment |
|
|
else: |
|
|
social_roi = 0 |
|
|
|
|
|
return round(social_roi, 3) |
|
|
|
|
|
async def _assess_policy_sustainability( |
|
|
self, |
|
|
request: PolicyAnalysisRequest, |
|
|
investment: Dict[str, float], |
|
|
indicators: List[PolicyIndicator] |
|
|
) -> int: |
|
|
"""Assess policy sustainability score (0-100).""" |
|
|
|
|
|
sustainability_factors = [] |
|
|
|
|
|
|
|
|
if abs(investment["deviation_percentage"]) < 10: |
|
|
sustainability_factors.append(85) |
|
|
elif abs(investment["deviation_percentage"]) < 25: |
|
|
sustainability_factors.append(65) |
|
|
else: |
|
|
sustainability_factors.append(35) |
|
|
|
|
|
|
|
|
improving_indicators = len([ind for ind in indicators if ind.trend == "improving"]) |
|
|
total_indicators = len(indicators) |
|
|
|
|
|
if total_indicators > 0: |
|
|
performance_sustainability = (improving_indicators / total_indicators) * 100 |
|
|
sustainability_factors.append(performance_sustainability) |
|
|
|
|
|
|
|
|
institutional_score = np.random.uniform(50, 90) |
|
|
sustainability_factors.append(institutional_score) |
|
|
|
|
|
|
|
|
political_score = np.random.uniform(40, 85) |
|
|
sustainability_factors.append(political_score) |
|
|
|
|
|
return int(statistics.mean(sustainability_factors)) |
|
|
|
|
|
def _classify_impact_level( |
|
|
self, |
|
|
effectiveness_scores: Dict[str, float], |
|
|
social_roi: float |
|
|
) -> ImpactLevel: |
|
|
"""Classify policy impact level.""" |
|
|
|
|
|
overall_effectiveness = effectiveness_scores["effectiveness"] |
|
|
|
|
|
if overall_effectiveness >= 0.8 and social_roi >= 2.0: |
|
|
return ImpactLevel.VERY_HIGH |
|
|
elif overall_effectiveness >= 0.7 and social_roi >= 1.0: |
|
|
return ImpactLevel.HIGH |
|
|
elif overall_effectiveness >= 0.5 and social_roi >= 0.5: |
|
|
return ImpactLevel.MEDIUM |
|
|
elif overall_effectiveness >= 0.3 and social_roi >= 0.0: |
|
|
return ImpactLevel.LOW |
|
|
else: |
|
|
return ImpactLevel.VERY_LOW |
|
|
|
|
|
async def _generate_strategic_recommendations( |
|
|
self, |
|
|
evaluation: PolicyEvaluation, |
|
|
request: PolicyAnalysisRequest, |
|
|
context: AgentContext |
|
|
) -> List[Dict[str, Any]]: |
|
|
"""Generate strategic policy recommendations.""" |
|
|
|
|
|
recommendations = [] |
|
|
|
|
|
|
|
|
if abs(evaluation.investment["deviation_percentage"]) > 15: |
|
|
recommendations.append({ |
|
|
"area": "budget_management", |
|
|
"recommendation": "Implement enhanced budget monitoring and control mechanisms", |
|
|
"priority": "high", |
|
|
"expected_impact": 0.8, |
|
|
"implementation_timeframe": "immediate", |
|
|
"success_metrics": ["Reduce budget deviation to <10%"] |
|
|
}) |
|
|
|
|
|
|
|
|
if evaluation.beneficiaries["coverage_rate"] < 80: |
|
|
recommendations.append({ |
|
|
"area": "coverage_expansion", |
|
|
"recommendation": "Expand outreach and improve access mechanisms", |
|
|
"priority": "medium", |
|
|
"expected_impact": 0.7, |
|
|
"implementation_timeframe": "short_term", |
|
|
"success_metrics": ["Increase coverage rate to >85%"] |
|
|
}) |
|
|
|
|
|
|
|
|
deteriorating_indicators = [ind for ind in evaluation.indicators if ind.trend == "deteriorating"] |
|
|
if deteriorating_indicators: |
|
|
recommendations.append({ |
|
|
"area": "performance_improvement", |
|
|
"recommendation": f"Address declining performance in {len(deteriorating_indicators)} key indicators", |
|
|
"priority": "high", |
|
|
"expected_impact": 0.9, |
|
|
"implementation_timeframe": "immediate", |
|
|
"success_metrics": ["Reverse negative trends in all indicators"] |
|
|
}) |
|
|
|
|
|
|
|
|
if evaluation.sustainability_score < 70: |
|
|
recommendations.append({ |
|
|
"area": "sustainability", |
|
|
"recommendation": "Strengthen institutional capacity and long-term planning", |
|
|
"priority": "medium", |
|
|
"expected_impact": 0.6, |
|
|
"implementation_timeframe": "medium_term", |
|
|
"success_metrics": ["Achieve sustainability score >75"] |
|
|
}) |
|
|
|
|
|
return recommendations |
|
|
|
|
|
async def _perform_benchmarking_analysis( |
|
|
self, |
|
|
evaluation: PolicyEvaluation, |
|
|
request: PolicyAnalysisRequest |
|
|
) -> Dict[str, Any]: |
|
|
"""Perform benchmarking against similar policies.""" |
|
|
|
|
|
|
|
|
benchmarking = { |
|
|
"reference_policies": [ |
|
|
{"name": "Similar Policy A", "effectiveness": 0.72, "roi": 1.8}, |
|
|
{"name": "Similar Policy B", "effectiveness": 0.68, "roi": 1.4}, |
|
|
{"name": "Best Practice Example", "effectiveness": 0.85, "roi": 2.3} |
|
|
], |
|
|
"percentile_ranking": { |
|
|
"effectiveness": np.random.randint(40, 95), |
|
|
"efficiency": np.random.randint(35, 90), |
|
|
"roi": np.random.randint(45, 88) |
|
|
}, |
|
|
"improvement_potential": { |
|
|
"effectiveness": max(0, 0.85 - evaluation.effectiveness_score["effectiveness"]), |
|
|
"roi": max(0, 2.3 - evaluation.roi_social) |
|
|
} |
|
|
} |
|
|
|
|
|
return benchmarking |
|
|
|
|
|
def _generate_evidence_hash( |
|
|
self, |
|
|
policy_id: str, |
|
|
investment: Dict[str, float], |
|
|
beneficiaries: Dict[str, Any], |
|
|
indicators: List[PolicyIndicator] |
|
|
) -> str: |
|
|
"""Generate SHA-256 hash for evidence verification.""" |
|
|
|
|
|
evidence_data = f"{policy_id}{investment['executed']}{beneficiaries['reached_population']}{len(indicators)}{datetime.utcnow().date()}" |
|
|
return hashlib.sha256(evidence_data.encode()).hexdigest() |
|
|
|
|
|
|
|
|
async def _apply_logic_model_framework(self, request, evaluation): |
|
|
"""Apply logic model evaluation framework.""" |
|
|
pass |
|
|
|
|
|
async def _apply_results_chain_framework(self, request, evaluation): |
|
|
"""Apply results chain evaluation framework.""" |
|
|
pass |
|
|
|
|
|
async def _apply_theory_of_change_framework(self, request, evaluation): |
|
|
"""Apply theory of change evaluation framework.""" |
|
|
pass |
|
|
|
|
|
async def _apply_cost_effectiveness_framework(self, request, evaluation): |
|
|
"""Apply cost-effectiveness evaluation framework.""" |
|
|
pass |