anderson-ufrj
commited on
Commit
·
d4c25be
1
Parent(s):
c78f128
docs(examples): add comprehensive examples for dados.gov.br agent integration
Browse files- Create example showing basic investigation with open data enrichment
- Add comparison example with/without enrichment to show benefits
- Include data availability analysis example
- Demonstrate practical usage patterns for developers
examples/agent_dados_gov_usage.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Example: Using Zumbi agent with dados.gov.br integration
|
| 3 |
+
|
| 4 |
+
This example demonstrates how the Zumbi agent can use the dados.gov.br
|
| 5 |
+
integration to enrich investigation data with open government datasets.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import asyncio
|
| 9 |
+
import json
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
|
| 12 |
+
from src.agents.zumbi import InvestigatorAgent, InvestigationRequest
|
| 13 |
+
from src.agents.deodoro import AgentContext
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
async def example_investigation_with_open_data():
|
| 17 |
+
"""
|
| 18 |
+
Example of running an investigation with open data enrichment.
|
| 19 |
+
"""
|
| 20 |
+
# Initialize the Zumbi agent
|
| 21 |
+
agent = InvestigatorAgent()
|
| 22 |
+
await agent.initialize()
|
| 23 |
+
|
| 24 |
+
# Create investigation request with open data enrichment enabled
|
| 25 |
+
request = InvestigationRequest(
|
| 26 |
+
query="Investigate health ministry contracts for anomalies",
|
| 27 |
+
organization_codes=["26000"], # Ministry of Health
|
| 28 |
+
anomaly_types=["price_anomaly", "vendor_concentration"],
|
| 29 |
+
max_records=50,
|
| 30 |
+
enable_open_data_enrichment=True # Enable dados.gov.br integration
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Create agent context
|
| 34 |
+
context = AgentContext(
|
| 35 |
+
investigation_id=f"inv_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
| 36 |
+
user_id="example_user",
|
| 37 |
+
correlation_id="example_001"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Create agent message
|
| 41 |
+
message = {
|
| 42 |
+
"action": "investigate",
|
| 43 |
+
"payload": request.model_dump()
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
print("Starting investigation with open data enrichment...")
|
| 47 |
+
print(f"Investigation ID: {context.investigation_id}")
|
| 48 |
+
print(f"Query: {request.query}")
|
| 49 |
+
print(f"Organization: {request.organization_codes}")
|
| 50 |
+
print("-" * 50)
|
| 51 |
+
|
| 52 |
+
# Process the investigation
|
| 53 |
+
response = await agent.process(message, context)
|
| 54 |
+
|
| 55 |
+
# Display results
|
| 56 |
+
if response.status == "completed":
|
| 57 |
+
result = response.result
|
| 58 |
+
|
| 59 |
+
print(f"\n✅ Investigation Status: {result['status']}")
|
| 60 |
+
print(f"📊 Records Analyzed: {result['metadata']['records_analyzed']}")
|
| 61 |
+
print(f"⚠️ Anomalies Found: {result['metadata']['anomalies_detected']}")
|
| 62 |
+
|
| 63 |
+
# Show anomalies
|
| 64 |
+
if result['anomalies']:
|
| 65 |
+
print("\n🔍 Detected Anomalies:")
|
| 66 |
+
for i, anomaly in enumerate(result['anomalies'], 1):
|
| 67 |
+
print(f"\n{i}. {anomaly['anomaly_type'].upper()}")
|
| 68 |
+
print(f" Severity: {anomaly['severity']:.2f}")
|
| 69 |
+
print(f" Confidence: {anomaly['confidence']:.2f}")
|
| 70 |
+
print(f" Description: {anomaly['description']}")
|
| 71 |
+
|
| 72 |
+
# Check if open data was found
|
| 73 |
+
if anomaly.get('evidence', {}).get('open_data_available'):
|
| 74 |
+
datasets = anomaly['evidence'].get('related_datasets', [])
|
| 75 |
+
if datasets:
|
| 76 |
+
print(f" 📂 Related Open Datasets Found: {len(datasets)}")
|
| 77 |
+
for ds in datasets[:2]: # Show first 2 datasets
|
| 78 |
+
print(f" - {ds.get('title', 'Unknown dataset')}")
|
| 79 |
+
|
| 80 |
+
# Show summary
|
| 81 |
+
print(f"\n📋 Investigation Summary:")
|
| 82 |
+
print(f" Total Contracts: {result['summary']['total_records']}")
|
| 83 |
+
print(f" Anomalies Found: {result['summary']['anomalies_found']}")
|
| 84 |
+
|
| 85 |
+
# Check for open data enrichment
|
| 86 |
+
if 'open_data_stats' in result['summary']:
|
| 87 |
+
stats = result['summary']['open_data_stats']
|
| 88 |
+
print(f"\n📊 Open Data Enrichment:")
|
| 89 |
+
print(f" Organizations with Open Data: {stats['organizations_with_data']}")
|
| 90 |
+
print(f" Total Datasets Referenced: {stats['total_datasets']}")
|
| 91 |
+
|
| 92 |
+
else:
|
| 93 |
+
print(f"\n❌ Investigation Failed: {response.error}")
|
| 94 |
+
|
| 95 |
+
# Cleanup
|
| 96 |
+
await agent.shutdown()
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
async def example_compare_with_without_open_data():
|
| 100 |
+
"""
|
| 101 |
+
Compare investigation results with and without open data enrichment.
|
| 102 |
+
"""
|
| 103 |
+
agent = InvestigatorAgent()
|
| 104 |
+
await agent.initialize()
|
| 105 |
+
|
| 106 |
+
# Base request parameters
|
| 107 |
+
base_params = {
|
| 108 |
+
"query": "Find suspicious contracts in education sector",
|
| 109 |
+
"organization_codes": ["25000"], # Ministry of Education
|
| 110 |
+
"anomaly_types": ["price_anomaly"],
|
| 111 |
+
"max_records": 30
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
# Context
|
| 115 |
+
context = AgentContext(
|
| 116 |
+
investigation_id="comparison_test",
|
| 117 |
+
user_id="example_user",
|
| 118 |
+
correlation_id="compare_001"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
print("🔬 Comparing investigations with and without open data enrichment\n")
|
| 122 |
+
|
| 123 |
+
# Run without open data
|
| 124 |
+
print("1️⃣ Investigation WITHOUT open data enrichment:")
|
| 125 |
+
request1 = InvestigationRequest(**base_params, enable_open_data_enrichment=False)
|
| 126 |
+
message1 = {"action": "investigate", "payload": request1.model_dump()}
|
| 127 |
+
|
| 128 |
+
start_time = asyncio.get_event_loop().time()
|
| 129 |
+
response1 = await agent.process(message1, context)
|
| 130 |
+
time1 = asyncio.get_event_loop().time() - start_time
|
| 131 |
+
|
| 132 |
+
anomalies1 = len(response1.result.get('anomalies', []))
|
| 133 |
+
print(f" ⏱️ Time: {time1:.2f}s")
|
| 134 |
+
print(f" ⚠️ Anomalies found: {anomalies1}")
|
| 135 |
+
|
| 136 |
+
# Run with open data
|
| 137 |
+
print("\n2️⃣ Investigation WITH open data enrichment:")
|
| 138 |
+
request2 = InvestigationRequest(**base_params, enable_open_data_enrichment=True)
|
| 139 |
+
message2 = {"action": "investigate", "payload": request2.model_dump()}
|
| 140 |
+
|
| 141 |
+
start_time = asyncio.get_event_loop().time()
|
| 142 |
+
response2 = await agent.process(message2, context)
|
| 143 |
+
time2 = asyncio.get_event_loop().time() - start_time
|
| 144 |
+
|
| 145 |
+
anomalies2 = len(response2.result.get('anomalies', []))
|
| 146 |
+
datasets_found = 0
|
| 147 |
+
|
| 148 |
+
# Count datasets found
|
| 149 |
+
for anomaly in response2.result.get('anomalies', []):
|
| 150 |
+
if anomaly.get('evidence', {}).get('related_datasets'):
|
| 151 |
+
datasets_found += len(anomaly['evidence']['related_datasets'])
|
| 152 |
+
|
| 153 |
+
print(f" ⏱️ Time: {time2:.2f}s")
|
| 154 |
+
print(f" ⚠️ Anomalies found: {anomalies2}")
|
| 155 |
+
print(f" 📂 Open datasets referenced: {datasets_found}")
|
| 156 |
+
|
| 157 |
+
print("\n📊 Comparison Summary:")
|
| 158 |
+
print(f" Time difference: +{time2-time1:.2f}s ({((time2-time1)/time1)*100:.1f}% slower)")
|
| 159 |
+
print(f" Additional context gained: {datasets_found} datasets")
|
| 160 |
+
print(f" Enhanced investigation: {'Yes' if datasets_found > 0 else 'No'}")
|
| 161 |
+
|
| 162 |
+
await agent.shutdown()
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
async def example_analyze_topic_availability():
|
| 166 |
+
"""
|
| 167 |
+
Example of using dados.gov.br to analyze data availability before investigation.
|
| 168 |
+
"""
|
| 169 |
+
from src.tools.dados_gov_tool import DadosGovTool
|
| 170 |
+
|
| 171 |
+
tool = DadosGovTool()
|
| 172 |
+
|
| 173 |
+
print("🔍 Analyzing open data availability for different government topics\n")
|
| 174 |
+
|
| 175 |
+
topics = ["saúde", "educação", "segurança pública", "transportes"]
|
| 176 |
+
|
| 177 |
+
for topic in topics:
|
| 178 |
+
print(f"\n📋 Topic: {topic.upper()}")
|
| 179 |
+
|
| 180 |
+
result = await tool._execute(
|
| 181 |
+
action="analyze",
|
| 182 |
+
topic=topic
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
if result.success:
|
| 186 |
+
data = result.data
|
| 187 |
+
print(f" Total datasets: {data['total_datasets']}")
|
| 188 |
+
print(f" Coverage: Federal({data['coverage']['federal']}), "
|
| 189 |
+
f"State({data['coverage']['state']}), "
|
| 190 |
+
f"Municipal({data['coverage']['municipal']})")
|
| 191 |
+
print(f" Formats: {', '.join(data['available_formats'][:5])}")
|
| 192 |
+
|
| 193 |
+
if data['top_organizations']:
|
| 194 |
+
print(f" Top publishers:")
|
| 195 |
+
for org, count in list(data['top_organizations'].items())[:3]:
|
| 196 |
+
print(f" - {org}: {count} datasets")
|
| 197 |
+
else:
|
| 198 |
+
print(f" ❌ Error: {result.error}")
|
| 199 |
+
|
| 200 |
+
await tool.service.close()
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
if __name__ == "__main__":
|
| 204 |
+
# Run examples
|
| 205 |
+
print("=" * 70)
|
| 206 |
+
print("CIDADÃO.AI - Zumbi Agent with dados.gov.br Integration Examples")
|
| 207 |
+
print("=" * 70)
|
| 208 |
+
|
| 209 |
+
# Choose which example to run
|
| 210 |
+
examples = {
|
| 211 |
+
"1": ("Basic investigation with open data", example_investigation_with_open_data),
|
| 212 |
+
"2": ("Compare with/without enrichment", example_compare_with_without_open_data),
|
| 213 |
+
"3": ("Analyze topic data availability", example_analyze_topic_availability),
|
| 214 |
+
}
|
| 215 |
+
|
| 216 |
+
print("\nAvailable examples:")
|
| 217 |
+
for key, (name, _) in examples.items():
|
| 218 |
+
print(f"{key}. {name}")
|
| 219 |
+
|
| 220 |
+
choice = input("\nSelect example (1-3): ").strip()
|
| 221 |
+
|
| 222 |
+
if choice in examples:
|
| 223 |
+
_, example_func = examples[choice]
|
| 224 |
+
asyncio.run(example_func())
|
| 225 |
+
else:
|
| 226 |
+
print("Invalid choice. Running default example...")
|
| 227 |
+
asyncio.run(example_investigation_with_open_data())
|