"""Analysis service for processing government data.""" from typing import Dict, List, Optional class AnalysisService: """Service for data analysis operations.""" def __init__(self): self._analysis_cache = {} async def analyze_spending_patterns(self, data: List[Dict]) -> Dict: """Analyze spending patterns in government data.""" if not data: return {"error": "No data provided for analysis"} # Basic analysis stub total_value = sum(float(item.get("valor", 0)) for item in data) avg_value = total_value / len(data) if data else 0 return { "total_items": len(data), "total_value": total_value, "average_value": avg_value, "analysis_type": "spending_patterns", "status": "stub_implementation" } async def detect_anomalies(self, data: List[Dict]) -> List[Dict]: """Detect anomalies in government data.""" # TODO: Integrate with ML anomaly detection return [] async def generate_insights(self, data: List[Dict]) -> List[str]: """Generate insights from data analysis.""" if not data: return ["Nenhum dado disponível para análise"] insights = [ f"Analisados {len(data)} registros de dados governamentais", "Análise detalhada em desenvolvimento", "Sistema de detecção de anomalias será implementado" ] return insights async def compare_periods(self, current_data: List[Dict], previous_data: List[Dict]) -> Dict: """Compare data between different periods.""" current_total = sum(float(item.get("valor", 0)) for item in current_data) previous_total = sum(float(item.get("valor", 0)) for item in previous_data) change = current_total - previous_total change_pct = (change / previous_total * 100) if previous_total > 0 else 0 return { "current_total": current_total, "previous_total": previous_total, "absolute_change": change, "percentage_change": change_pct, "trend": "increase" if change > 0 else "decrease" if change < 0 else "stable" } async def rank_entities(self, data: List[Dict], by: str = "valor") -> List[Dict]: """Rank entities by specified criteria.""" # TODO: Implement entity ranking return []