import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # === 强制指定 BERT 配置 === from transformers import BertConfig, BertTokenizer, BertForSequenceClassification MODEL_REPO = "robot4/emotion" MODEL_SUBFOLDER = "checkpoints_finally_end" print(f"正在加载 BERT 模型: {MODEL_REPO} ...") try: # 1. 显式加载 BERT Tokenizer tokenizer = BertTokenizer.from_pretrained(MODEL_REPO, subfolder=MODEL_SUBFOLDER) # 2. 显式加载 BERT Config 并修正 model_type config = BertConfig.from_pretrained(MODEL_REPO, subfolder=MODEL_SUBFOLDER) # 3. 加载模型 model = BertForSequenceClassification.from_pretrained( MODEL_REPO, config=config, subfolder=MODEL_SUBFOLDER ) except Exception as e: print(f"Error: {e}") raise e # 自动判断是否有 GPU (Space 上通常是 CPU,除非您付费) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def predict(text): if not text: return None, "请输入内容" # 1. 预处理 inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128, padding=True) inputs = {k: v.to(device) for k, v in inputs.items()} # 2. 推理 with torch.no_grad(): logits = model(**inputs).logits probs = torch.nn.functional.softmax(logits, dim=-1) # 3. 解析结果 pred_idx = torch.argmax(probs).item() confidence = probs[0][pred_idx].item() # 标签映射 id2label = {0: '😡 消极 (Negative)', 1: '😐 中性 (Neutral)', 2: '😊 积极 (Positive)'} label = id2label.get(pred_idx, "Unknown") # 返回给界面的数据 return { '积极': probs[0][2].item(), '中性': probs[0][1].item(), '消极': probs[0][0].item() }, f"预测结果: {label}\n置信度: {confidence:.4f}" # === 构建界面 === with gr.Blocks(title="中文情感分析") as demo: gr.Markdown(f"# 🎭 中文情感分析演示 (BERT)") gr.Markdown(f"模型加载自: [Hugging Face Hub]({MODEL_REPO})") with gr.Row(): with gr.Column(): inp = gr.Textbox(label="输入中文评论", lines=4, placeholder="比如:这家店真的太好吃了,强烈推荐!") btn = gr.Button("开始分析", variant="primary") with gr.Column(): out_label = gr.Label(label="情感概率") out_text = gr.Textbox(label="详细结果") btn.click(predict, inputs=inp, outputs=[out_label, out_text]) gr.Examples( examples=["这家店太难吃了,避雷!", "还可以,中规中矩。", "超级好评,下次还来!", "物流稍微有点慢,但东西不错。"], inputs=inp ) if __name__ == "__main__": demo.launch()