File size: 7,607 Bytes
cf584be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import torch
from torch import nn
from tqdm import tqdm
from torch.nn import functional as F
from transformers import (
set_seed, pipeline, AutoTokenizer, AutoModelForCausalLM
)
EMBEDDING = """
You are a helpful AI assistant. Your task is to analyze input text and create a high-quality semantic vector embedding, which represents key concepts, relationships, and semantic meaning.
"""
GENERATION = """
You are a helpful AI assistant. Your task is to enrich user input for more effective embedding representation by adding semantic depth.
For each input, briefly enhance the content by:
1. Identifying core concepts and their relationships.
2. Including key terminology with essential definitions.
3. Adding contextually relevant synonyms and related terms.
4. Connecting to related topics and common applications without excessive elaboration.
To represent the final embedding, you MUST end every response with <|embed_token|>.
"""
class SearchR3(nn.Module):
def __init__(self,
path: str,
max_length: int,
batch_size: int):
nn.Module.__init__(self)
#
self.model = AutoModelForCausalLM.from_pretrained(
path, torch_dtype='auto', device_map='auto'
)
self.tokenizer = AutoTokenizer.from_pretrained(
path, truncation_side='left', padding_side='left'
)
self.embed_token = self.tokenizer.encode('<|embed_token|>')[0]
self.max_length = max_length
self.batch_size = batch_size
@property
def device(self):
return next(self.model.parameters()).device
@torch.no_grad()
def generate(self, batch: list[str]):
if not isinstance(batch, (list, tuple)):
raise ValueError('batch type is incorrect')
if any(not isinstance(v, str) for v in batch):
raise ValueError('batch item type is incorrect')
# batch
if len(batch) > self.batch_size:
outputs = []
for i in tqdm(
range(0, len(batch), self.batch_size)
):
outputs.extend(
self.generate(
batch[i:i + self.batch_size]
)
)
return outputs
# tokenize
messages = [
[
{'role': 'system', 'content': GENERATION.strip()},
{'role': 'user', 'content': item}
]
for item in batch
]
context = self.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = self.tokenizer(
context, padding='longest', truncation=True,
return_tensors='pt', max_length=self.max_length // 2
)
prompt_length = inputs['input_ids'].size(-1)
# generate
self.model.eval()
outputs = self.model.generate(
**inputs.to(device=self.device),
max_new_tokens=self.max_length - prompt_length
)
outputs = self.tokenizer.batch_decode(
outputs[:, prompt_length:], skip_special_tokens=False
)
# cleanup
for special_token in self.tokenizer.all_special_tokens:
if special_token == '<|embed_token|>':
continue
outputs = [
item.replace(special_token, '') for item in outputs
]
messages = [
item + [
{'role': 'assistant', 'content': outputs[i].strip()}
]
for i, item in enumerate(messages)
]
return messages
def format(self, batch: list[str]):
if any(not isinstance(v, str) for v in batch):
raise RuntimeError('batch type is incorrect')
return [
[
{'role': 'system', 'content': EMBEDDING.strip()},
{'role': 'user', 'content': item},
{'role': 'assistant', 'content': 'The embedding is: <|embed_token|>'}
]
for item in batch
]
@torch.no_grad()
def encode(self, batch: list[any]):
if not isinstance(batch, (list, tuple)):
raise ValueError('batch type is incorrect')
# batch
if len(batch) > self.batch_size:
outputs = [
self.encode(
batch[i:i + self.batch_size]
)
for i in tqdm(
range(0, len(batch), self.batch_size)
)
]
return torch.cat(outputs, dim=0)
# format
if all(isinstance(v, str) for v in batch):
batch = self.format(batch=batch)
# validate
if any(
m[-1]['role'] != 'assistant' for m in batch
):
raise RuntimeError('unexpected role')
if any(
m[-2]['role'] != 'user' for m in batch
):
raise RuntimeError('unexpected role')
# ensure <embed_token>
batch = [
m if '<|embed_token|>' in m[-1]['content']
else self.format([m[-2]['content']])[0]
for m in batch
]
if any(
'<|embed_token|>' not in m[-1]['content'] for m in batch
):
raise RuntimeError('unexpected embed token')
# tokenize
context = self.tokenizer.apply_chat_template(
batch, tokenize=False, add_generation_prompt=False
)
inputs = self.tokenizer(
context, padding='longest', truncation=True,
return_tensors='pt', max_length=self.max_length
)
# forward
self.model.eval()
outputs = self.model(
**inputs.to(device=self.device),
return_dict=True, output_hidden_states=True
)
hidden_state = outputs['hidden_states'][-1]
# pooling
length = inputs['input_ids'].size(-1)
valid_mask = torch.arange(length, device=self.device)
valid_mask = torch.where(
valid_mask.unsqueeze(0) > length - 5, True, False
)
embed_mask = torch.where(
inputs['input_ids'] == self.embed_token, True, False
)
embed_mask = embed_mask.logical_and(valid_mask)
return F.normalize(
hidden_state[embed_mask].cpu().float(), dim=-1
)
def main():
# init
set_seed(42)
from pprint import pprint
# basic
generator = pipeline(
task='text-generation',
model='ytgui/Search-R3.0-Small',
torch_dtype='auto', device_map='auto'
)
messages = [
{"role": 'user', 'content': 'Who are you?'},
]
response = generator(messages, max_new_tokens=256)
pprint(response)
# reasoning
model = SearchR3(
'ytgui/Search-R3.0-Small', max_length=1024, batch_size=8
)
reasoning = model.generate(
batch=['what python library is useful for data analysis?']
)
pprint(reasoning)
# embedding
documents = [
'pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.',
'The giant panda (Ailuropoda melanoleuca), also known as the panda bear or simply panda, is a bear species endemic to China. It is characterised by its white coat with black patches around the eyes, ears, legs and shoulders.',
]
E_d = model.encode(batch=documents)
E_q = model.encode(batch=reasoning)
print('distance:', torch.cdist(E_q, E_d, p=2.0))
if __name__ == '__main__':
main()
|