DeepSignal-4B (GGUF)

This repository provides a GGUF model file for local inference (e.g., llama.cpp / LM Studio). It is intended for traffic-signal-control analysis and related text-generation workflows.

Files

  • DeepSignal-4B_V1.F16.gguf
  • config.json

Quickstart (llama.cpp)

llama-cli -m DeepSignal-4B_V1.F16.gguf -p "Summarize the traffic state and suggest a signal timing adjustment."

Evaluation (Traffic Simulation)

Performance Metrics Comparison by Model

Model Avg Saturation Avg Queue Length Max Saturation Max Queue Length Avg Throughput Avg Congestion Index
Qwen3-30B-A3B 0.1663 5.8604 0.1663 5.8604 9288.6633 0.1625
DeepSignal-4B 0.1657 5.8301 0.1657 5.8301 9302.7960 0.1752
LightGPT-8B-Llama3 0.1538 5.7688 0.1538 5.7688 5510.2010 0.2086
SFT 0.1604 6.0021 0.1604 6.0021 5390.4867 0.2093
Qwen3-4B 0.2152 8.2083 0.2152 8.2083 7112.8433 0.2522
Max Pressure 0.2059 8.1034 0.2059 8.1034 7395.1463 0.2556
GPT-OSS-20B 0.2591 10.4292 0.2591 10.4292 8742.7267 0.3175

Congestion Level Distribution by Model (%)

Model Light congestion Smooth Very smooth
DeepSignal-4B 0.00 12.00 88.00
GPT-OSS-20B 2.00 53.33 44.67
LightGPT-8B-Llama3 0.00 21.00 79.00
Max Pressure 0.00 36.44 63.56
Qwen3-30B-A3B 0.00 10.00 90.00
Qwen3-4B 2.33 32.00 65.67
SFT 0.00 23.33 76.67

Visualization

Metrics Comparison

Notes

  • The results above are reported from a SUMO-based traffic simulation evaluation.
  • If you need to reproduce the evaluation, include the exact scenario configuration, random seeds, and controller settings in a separate README or paper appendix.
Downloads last month
39
GGUF
Model size
4B params
Architecture
qwen3
Hardware compatibility
Log In to view the estimation

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support