SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("adriansanz/ST-tramits-VL-001-5ep")
sentences = [
"S'ha de comunicar la realització de focs d’esbarjo i qualsevol mena de crema de vegetació agrària en microexplotacions o petites explotacions agràries...",
"Quin és el tipus de explotacions agràries que estan subjectes a la comunicació de focs d'esbarjo o cremes de vegetació agrària en microexplotacions?",
'Quin és el paper de les bases de la convocatòria en la sol·licitud de subvenció?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1241 |
| cosine_accuracy@3 |
0.2263 |
| cosine_accuracy@5 |
0.3358 |
| cosine_accuracy@10 |
0.5328 |
| cosine_precision@1 |
0.1241 |
| cosine_precision@3 |
0.0754 |
| cosine_precision@5 |
0.0672 |
| cosine_precision@10 |
0.0533 |
| cosine_recall@1 |
0.1241 |
| cosine_recall@3 |
0.2263 |
| cosine_recall@5 |
0.3358 |
| cosine_recall@10 |
0.5328 |
| cosine_ndcg@10 |
0.29 |
| cosine_mrr@10 |
0.2175 |
| cosine_map@100 |
0.2404 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1387 |
| cosine_accuracy@3 |
0.2628 |
| cosine_accuracy@5 |
0.3358 |
| cosine_accuracy@10 |
0.5693 |
| cosine_precision@1 |
0.1387 |
| cosine_precision@3 |
0.0876 |
| cosine_precision@5 |
0.0672 |
| cosine_precision@10 |
0.0569 |
| cosine_recall@1 |
0.1387 |
| cosine_recall@3 |
0.2628 |
| cosine_recall@5 |
0.3358 |
| cosine_recall@10 |
0.5693 |
| cosine_ndcg@10 |
0.3136 |
| cosine_mrr@10 |
0.2375 |
| cosine_map@100 |
0.2568 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1387 |
| cosine_accuracy@3 |
0.2701 |
| cosine_accuracy@5 |
0.3796 |
| cosine_accuracy@10 |
0.5693 |
| cosine_precision@1 |
0.1387 |
| cosine_precision@3 |
0.09 |
| cosine_precision@5 |
0.0759 |
| cosine_precision@10 |
0.0569 |
| cosine_recall@1 |
0.1387 |
| cosine_recall@3 |
0.2701 |
| cosine_recall@5 |
0.3796 |
| cosine_recall@10 |
0.5693 |
| cosine_ndcg@10 |
0.317 |
| cosine_mrr@10 |
0.2406 |
| cosine_map@100 |
0.2616 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1241 |
| cosine_accuracy@3 |
0.2774 |
| cosine_accuracy@5 |
0.3212 |
| cosine_accuracy@10 |
0.5182 |
| cosine_precision@1 |
0.1241 |
| cosine_precision@3 |
0.0925 |
| cosine_precision@5 |
0.0642 |
| cosine_precision@10 |
0.0518 |
| cosine_recall@1 |
0.1241 |
| cosine_recall@3 |
0.2774 |
| cosine_recall@5 |
0.3212 |
| cosine_recall@10 |
0.5182 |
| cosine_ndcg@10 |
0.2904 |
| cosine_mrr@10 |
0.2218 |
| cosine_map@100 |
0.244 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1095 |
| cosine_accuracy@3 |
0.2555 |
| cosine_accuracy@5 |
0.4015 |
| cosine_accuracy@10 |
0.5401 |
| cosine_precision@1 |
0.1095 |
| cosine_precision@3 |
0.0852 |
| cosine_precision@5 |
0.0803 |
| cosine_precision@10 |
0.054 |
| cosine_recall@1 |
0.1095 |
| cosine_recall@3 |
0.2555 |
| cosine_recall@5 |
0.4015 |
| cosine_recall@10 |
0.5401 |
| cosine_ndcg@10 |
0.2983 |
| cosine_mrr@10 |
0.2238 |
| cosine_map@100 |
0.2454 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1095 |
| cosine_accuracy@3 |
0.2044 |
| cosine_accuracy@5 |
0.3285 |
| cosine_accuracy@10 |
0.5547 |
| cosine_precision@1 |
0.1095 |
| cosine_precision@3 |
0.0681 |
| cosine_precision@5 |
0.0657 |
| cosine_precision@10 |
0.0555 |
| cosine_recall@1 |
0.1095 |
| cosine_recall@3 |
0.2044 |
| cosine_recall@5 |
0.3285 |
| cosine_recall@10 |
0.5547 |
| cosine_ndcg@10 |
0.2897 |
| cosine_mrr@10 |
0.2102 |
| cosine_map@100 |
0.2299 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 4,091 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 6 tokens
- mean: 39.34 tokens
- max: 164 tokens
|
- min: 9 tokens
- mean: 20.77 tokens
- max: 49 tokens
|
- Samples:
| positive |
anchor |
Posteriorment a l’obtenció de l’informe favorable, caldrà realitzar l’acte de comprovació en matèria d’incendis i procedir a efectuar la comunicació prèvia corresponent. |
Quin és el resultat esperat després d'obtenir l'informe previ en matèria d'incendis? |
El certificat tècnic és un requisit per a l'exercici d'una activitat econòmica innòcua. |
Quin és el paper del certificat tècnic en la Declaració responsable d'obertura? |
El document necessari per realitzar l'autoliquidació de taxa per llicència de primera ocupació és la llicència de primera ocupació de l'immoble. |
Quin és el document necessari per realitzar l'autoliquidació de taxa per llicència de primera ocupació? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 5
lr_scheduler_type: cosine
warmup_ratio: 0.2
bf16: True
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 5
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.2
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
eval_use_gather_object: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_1024_cosine_map@100 |
dim_768_cosine_map@100 |
dim_512_cosine_map@100 |
dim_256_cosine_map@100 |
dim_128_cosine_map@100 |
dim_64_cosine_map@100 |
| 0.625 |
10 |
4.3533 |
- |
- |
- |
- |
- |
- |
| 1.0 |
16 |
- |
0.2076 |
0.2123 |
0.2055 |
0.1996 |
0.2188 |
0.1861 |
| 1.2461 |
20 |
2.4149 |
- |
- |
- |
- |
- |
- |
| 1.8711 |
30 |
1.1968 |
- |
- |
- |
- |
- |
- |
| 1.9961 |
32 |
- |
0.2056 |
0.2318 |
0.2363 |
0.1932 |
0.2330 |
0.2255 |
| 2.4922 |
40 |
0.7983 |
- |
- |
- |
- |
- |
- |
| 2.9922 |
48 |
- |
0.2322 |
0.2512 |
0.2514 |
0.2385 |
0.2437 |
0.2489 |
| 3.1133 |
50 |
0.4869 |
- |
- |
- |
- |
- |
- |
| 3.7383 |
60 |
0.3793 |
- |
- |
- |
- |
- |
- |
| 3.9883 |
64 |
- |
0.2414 |
0.2364 |
0.2365 |
0.2244 |
0.2167 |
0.2190 |
| 4.3594 |
70 |
0.3421 |
- |
- |
- |
- |
- |
- |
| 4.9844 |
80 |
0.2925 |
0.2404 |
0.2568 |
0.2616 |
0.2440 |
0.2454 |
0.2299 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.1.0.dev0
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}