wav2vec2-xls-r-300m-en-phoneme-ctc-41h

It achieves the following results on the evaluation set:

  • Loss: 0.3051
  • Per: 0.0887
  • Phoneme Accuracy: 0.9113

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Per Phoneme Accuracy
5.9962 1.0 597 3.5377 0.9980 0.0020
3.3735 2.0 1194 0.4537 0.1548 0.8452
0.7613 3.0 1791 0.2519 0.1117 0.8883
0.4123 4.0 2388 0.2086 0.1031 0.8969
0.3445 5.0 2985 0.1980 0.0996 0.9004
0.2721 6.0 3582 0.1892 0.0982 0.9018
0.2487 7.0 4179 0.1879 0.0970 0.9030
0.227 8.0 4776 0.1938 0.0965 0.9035
0.2117 9.0 5373 0.1855 0.0958 0.9042
0.2044 10.0 5970 0.1947 0.0960 0.9040
0.1717 11.0 6567 0.2006 0.0952 0.9048
0.1692 12.0 7164 0.1995 0.0932 0.9068
0.1615 13.0 7761 0.2060 0.0937 0.9063
0.147 14.0 8358 0.2094 0.0944 0.9056
0.1429 15.0 8955 0.2146 0.0942 0.9058
0.131 16.0 9552 0.2171 0.0934 0.9066
0.1264 17.0 10149 0.2151 0.0918 0.9082
0.1254 18.0 10746 0.2267 0.0919 0.9081
0.116 19.0 11343 0.2384 0.0917 0.9083
0.1143 20.0 11940 0.2317 0.0927 0.9073
0.1079 21.0 12537 0.2433 0.0913 0.9087
0.1023 22.0 13134 0.2490 0.0919 0.9081
0.0951 23.0 13731 0.2544 0.0912 0.9088
0.0953 24.0 14328 0.2543 0.0909 0.9091
0.0946 25.0 14925 0.2630 0.0909 0.9091
0.0929 26.0 15522 0.2656 0.0914 0.9086
0.0849 27.0 16119 0.2683 0.0901 0.9099
0.0854 28.0 16716 0.2659 0.0910 0.9090
0.0815 29.0 17313 0.2549 0.0907 0.9093
0.0829 30.0 17910 0.2875 0.0916 0.9084
0.0764 31.0 18507 0.2767 0.0910 0.9090
0.0734 32.0 19104 0.2618 0.0896 0.9104
0.0709 33.0 19701 0.2863 0.0908 0.9092
0.0747 34.0 20298 0.2839 0.0907 0.9093
0.0706 35.0 20895 0.2814 0.0896 0.9104
0.0688 36.0 21492 0.2893 0.0898 0.9102
0.0657 37.0 22089 0.3021 0.0894 0.9106
0.0647 38.0 22686 0.2915 0.0888 0.9112
0.0649 39.0 23283 0.2944 0.0893 0.9107
0.0621 40.0 23880 0.2880 0.0886 0.9114
0.0623 41.0 24477 0.2984 0.0891 0.9109
0.0571 42.0 25074 0.2993 0.0886 0.9114
0.0577 43.0 25671 0.3016 0.0886 0.9114
0.0597 44.0 26268 0.3063 0.0888 0.9112
0.0558 45.0 26865 0.3075 0.0888 0.9112
0.0622 46.0 27462 0.3051 0.0887 0.9113

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
26
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for bobboyms/wav2vec2-xls-r-300m-en-phoneme-ctc-41h

Finetuned
(781)
this model

Evaluation results