TWON-Agent-OSN-Replies-de

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3698

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss
2.5673 0.0402 200 2.3212
2.1646 0.0805 400 2.0731
1.8986 0.1207 600 1.8557
1.6862 0.1609 800 1.6990
1.5341 0.2012 1000 1.5808
1.426 0.2414 1200 1.4958
1.3729 0.2816 1400 1.4311
1.2906 0.3219 1600 1.3739
1.2528 0.3621 1800 1.3325
1.2179 0.4023 2000 1.3026
1.1649 0.4426 2200 1.2771
1.1465 0.4828 2400 1.2520
1.1122 0.5230 2600 1.2309
1.0963 0.5633 2800 1.2096
1.0867 0.6035 3000 1.1950
1.0632 0.6437 3200 1.1824
1.0512 0.6840 3400 1.1730
1.0394 0.7242 3600 1.1646
1.0317 0.7644 3800 1.1513
1.0163 0.8047 4000 1.1481
0.9996 0.8449 4200 1.1462
0.9883 0.8851 4400 1.1372
0.9739 0.9254 4600 1.1317
0.9767 0.9656 4800 1.1267
0.9674 1.0058 5000 1.1256
0.9479 1.0461 5200 1.1318
0.9393 1.0863 5400 1.1232
0.9341 1.1265 5600 1.1241
0.9131 1.1668 5800 1.1207
0.9191 1.2070 6000 1.1190
0.9118 1.2472 6200 1.1219
0.8974 1.2875 6400 1.1192
0.8863 1.3277 6600 1.1180
0.8884 1.3679 6800 1.1206
0.871 1.4082 7000 1.1187
0.8677 1.4484 7200 1.1259
0.8692 1.4886 7400 1.1233
0.8537 1.5289 7600 1.1244
0.8559 1.5691 7800 1.1234
0.8577 1.6093 8000 1.1294
0.8298 1.6496 8200 1.1306
0.8444 1.6898 8400 1.1265
0.83 1.7300 8600 1.1315
0.8183 1.7703 8800 1.1368
0.8199 1.8105 9000 1.1392
0.8006 1.8507 9200 1.1344
0.7958 1.8910 9400 1.1535
0.7916 1.9312 9600 1.1527
0.7799 1.9714 9800 1.1460
0.7794 2.0117 10000 1.1498
0.7754 2.0519 10200 1.1534
0.7723 2.0921 10400 1.1568
0.7579 2.1324 10600 1.1635
0.7571 2.1726 10800 1.1567
0.7566 2.2128 11000 1.1763
0.7469 2.2531 11200 1.1657
0.74 2.2933 11400 1.1744
0.721 2.3335 11600 1.1735
0.7238 2.3738 11800 1.1729
0.7281 2.4140 12000 1.1903
0.7197 2.4542 12200 1.1895
0.7075 2.4945 12400 1.1840
0.7185 2.5347 12600 1.1843
0.7131 2.5749 12800 1.1811
0.7066 2.6152 13000 1.1886
0.7013 2.6554 13200 1.2076
0.6907 2.6956 13400 1.1883
0.6833 2.7359 13600 1.1965
0.6928 2.7761 13800 1.2085
0.6774 2.8163 14000 1.1977
0.6861 2.8566 14200 1.2152
0.6795 2.8968 14400 1.2142
0.6679 2.9370 14600 1.2088
0.6551 2.9773 14800 1.2272
0.6599 3.0175 15000 1.2190
0.6443 3.0577 15200 1.2301
0.6464 3.0980 15400 1.2363
0.6416 3.1382 15600 1.2255
0.6479 3.1784 15800 1.2394
0.6366 3.2187 16000 1.2341
0.6365 3.2589 16200 1.2461
0.6348 3.2991 16400 1.2379
0.6372 3.3394 16600 1.2372
0.6213 3.3796 16800 1.2410
0.6293 3.4198 17000 1.2479
0.6212 3.4601 17200 1.2410
0.6295 3.5003 17400 1.2473
0.6239 3.5405 17600 1.2542
0.6175 3.5808 17800 1.2481
0.6156 3.6210 18000 1.2608
0.614 3.6612 18200 1.2660
0.6072 3.7015 18400 1.2581
0.5974 3.7417 18600 1.2547
0.603 3.7819 18800 1.2671
0.5953 3.8222 19000 1.2588
0.5931 3.8624 19200 1.2762
0.5972 3.9026 19400 1.2587
0.5873 3.9429 19600 1.2870
0.592 3.9831 19800 1.2598
0.5851 4.0233 20000 1.2815
0.5684 4.0636 20200 1.2853
0.5758 4.1038 20400 1.2815
0.5803 4.1440 20600 1.2781
0.5668 4.1843 20800 1.2832
0.5659 4.2245 21000 1.2807
0.5687 4.2647 21200 1.2854
0.5711 4.3050 21400 1.2997
0.5668 4.3452 21600 1.2976
0.5601 4.3854 21800 1.2830
0.5631 4.4257 22000 1.2915
0.5633 4.4659 22200 1.3009
0.5596 4.5061 22400 1.2926
0.5572 4.5464 22600 1.2954
0.5497 4.5866 22800 1.3009
0.5523 4.6268 23000 1.3114
0.544 4.6671 23200 1.3007
0.5465 4.7073 23400 1.2887
0.5452 4.7475 23600 1.3136
0.5435 4.7878 23800 1.3094
0.5368 4.8280 24000 1.3141
0.5359 4.8682 24200 1.3112
0.5352 4.9085 24400 1.3126
0.5411 4.9487 24600 1.3149
0.5357 4.9889 24800 1.3144
0.5245 5.0292 25000 1.3235
0.5211 5.0694 25200 1.3211
0.5226 5.1096 25400 1.3162
0.5263 5.1499 25600 1.3308
0.5242 5.1901 25800 1.3286
0.5253 5.2303 26000 1.3320
0.5215 5.2706 26200 1.3249
0.519 5.3108 26400 1.3330
0.5162 5.3510 26600 1.3224
0.5123 5.3913 26800 1.3270
0.5107 5.4315 27000 1.3291
0.5161 5.4717 27200 1.3360
0.515 5.5120 27400 1.3358
0.5137 5.5522 27600 1.3360
0.5201 5.5924 27800 1.3405
0.5001 5.6327 28000 1.3359
0.5032 5.6729 28200 1.3253
0.4985 5.7131 28400 1.3420
0.4993 5.7534 28600 1.3410
0.4964 5.7936 28800 1.3407
0.5148 5.8338 29000 1.3304
0.4968 5.8741 29200 1.3385
0.4998 5.9143 29400 1.3413
0.4905 5.9545 29600 1.3524
0.4937 5.9948 29800 1.3509
0.4899 6.0350 30000 1.3423
0.4985 6.0752 30200 1.3526
0.4914 6.1155 30400 1.3515
0.4885 6.1557 30600 1.3554
0.4904 6.1959 30800 1.3446
0.4839 6.2362 31000 1.3584
0.4854 6.2764 31200 1.3497
0.4828 6.3166 31400 1.3624
0.4878 6.3569 31600 1.3430
0.4862 6.3971 31800 1.3530
0.4844 6.4373 32000 1.3559
0.4713 6.4776 32200 1.3592
0.4841 6.5178 32400 1.3537
0.4834 6.5580 32600 1.3569
0.4774 6.5983 32800 1.3620
0.4808 6.6385 33000 1.3557
0.481 6.6787 33200 1.3602
0.4725 6.7190 33400 1.3667
0.4752 6.7592 33600 1.3612
0.4698 6.7994 33800 1.3568
0.4717 6.8397 34000 1.3703
0.4723 6.8799 34200 1.3598
0.4721 6.9201 34400 1.3538
0.4777 6.9604 34600 1.3646
0.4815 7.0006 34800 1.3581
0.4674 7.0408 35000 1.3688
0.4658 7.0811 35200 1.3728
0.4634 7.1213 35400 1.3690
0.4713 7.1615 35600 1.3664
0.4709 7.2018 35800 1.3719
0.4606 7.2420 36000 1.3700
0.4583 7.2822 36200 1.3702
0.4599 7.3225 36400 1.3719
0.469 7.3627 36600 1.3646
0.4662 7.4029 36800 1.3622
0.4682 7.4432 37000 1.3662
0.47 7.4834 37200 1.3695
0.4653 7.5236 37400 1.3731
0.4676 7.5639 37600 1.3667
0.4689 7.6041 37800 1.3702
0.4675 7.6443 38000 1.3699
0.4614 7.6846 38200 1.3753
0.4622 7.7248 38400 1.3687
0.4662 7.7650 38600 1.3731
0.4609 7.8053 38800 1.3667
0.4661 7.8455 39000 1.3732
0.4605 7.8857 39200 1.3692
0.4649 7.9260 39400 1.3716
0.463 7.9662 39600 1.3692

Framework versions

  • PEFT 0.12.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for simon-muenker/TWON-Agent-OSN-Replies-de

Adapter
(590)
this model

Collection including simon-muenker/TWON-Agent-OSN-Replies-de

Evaluation results