TWON-Agents
Collection
4 items
•
Updated
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.5673 | 0.0402 | 200 | 2.3212 |
| 2.1646 | 0.0805 | 400 | 2.0731 |
| 1.8986 | 0.1207 | 600 | 1.8557 |
| 1.6862 | 0.1609 | 800 | 1.6990 |
| 1.5341 | 0.2012 | 1000 | 1.5808 |
| 1.426 | 0.2414 | 1200 | 1.4958 |
| 1.3729 | 0.2816 | 1400 | 1.4311 |
| 1.2906 | 0.3219 | 1600 | 1.3739 |
| 1.2528 | 0.3621 | 1800 | 1.3325 |
| 1.2179 | 0.4023 | 2000 | 1.3026 |
| 1.1649 | 0.4426 | 2200 | 1.2771 |
| 1.1465 | 0.4828 | 2400 | 1.2520 |
| 1.1122 | 0.5230 | 2600 | 1.2309 |
| 1.0963 | 0.5633 | 2800 | 1.2096 |
| 1.0867 | 0.6035 | 3000 | 1.1950 |
| 1.0632 | 0.6437 | 3200 | 1.1824 |
| 1.0512 | 0.6840 | 3400 | 1.1730 |
| 1.0394 | 0.7242 | 3600 | 1.1646 |
| 1.0317 | 0.7644 | 3800 | 1.1513 |
| 1.0163 | 0.8047 | 4000 | 1.1481 |
| 0.9996 | 0.8449 | 4200 | 1.1462 |
| 0.9883 | 0.8851 | 4400 | 1.1372 |
| 0.9739 | 0.9254 | 4600 | 1.1317 |
| 0.9767 | 0.9656 | 4800 | 1.1267 |
| 0.9674 | 1.0058 | 5000 | 1.1256 |
| 0.9479 | 1.0461 | 5200 | 1.1318 |
| 0.9393 | 1.0863 | 5400 | 1.1232 |
| 0.9341 | 1.1265 | 5600 | 1.1241 |
| 0.9131 | 1.1668 | 5800 | 1.1207 |
| 0.9191 | 1.2070 | 6000 | 1.1190 |
| 0.9118 | 1.2472 | 6200 | 1.1219 |
| 0.8974 | 1.2875 | 6400 | 1.1192 |
| 0.8863 | 1.3277 | 6600 | 1.1180 |
| 0.8884 | 1.3679 | 6800 | 1.1206 |
| 0.871 | 1.4082 | 7000 | 1.1187 |
| 0.8677 | 1.4484 | 7200 | 1.1259 |
| 0.8692 | 1.4886 | 7400 | 1.1233 |
| 0.8537 | 1.5289 | 7600 | 1.1244 |
| 0.8559 | 1.5691 | 7800 | 1.1234 |
| 0.8577 | 1.6093 | 8000 | 1.1294 |
| 0.8298 | 1.6496 | 8200 | 1.1306 |
| 0.8444 | 1.6898 | 8400 | 1.1265 |
| 0.83 | 1.7300 | 8600 | 1.1315 |
| 0.8183 | 1.7703 | 8800 | 1.1368 |
| 0.8199 | 1.8105 | 9000 | 1.1392 |
| 0.8006 | 1.8507 | 9200 | 1.1344 |
| 0.7958 | 1.8910 | 9400 | 1.1535 |
| 0.7916 | 1.9312 | 9600 | 1.1527 |
| 0.7799 | 1.9714 | 9800 | 1.1460 |
| 0.7794 | 2.0117 | 10000 | 1.1498 |
| 0.7754 | 2.0519 | 10200 | 1.1534 |
| 0.7723 | 2.0921 | 10400 | 1.1568 |
| 0.7579 | 2.1324 | 10600 | 1.1635 |
| 0.7571 | 2.1726 | 10800 | 1.1567 |
| 0.7566 | 2.2128 | 11000 | 1.1763 |
| 0.7469 | 2.2531 | 11200 | 1.1657 |
| 0.74 | 2.2933 | 11400 | 1.1744 |
| 0.721 | 2.3335 | 11600 | 1.1735 |
| 0.7238 | 2.3738 | 11800 | 1.1729 |
| 0.7281 | 2.4140 | 12000 | 1.1903 |
| 0.7197 | 2.4542 | 12200 | 1.1895 |
| 0.7075 | 2.4945 | 12400 | 1.1840 |
| 0.7185 | 2.5347 | 12600 | 1.1843 |
| 0.7131 | 2.5749 | 12800 | 1.1811 |
| 0.7066 | 2.6152 | 13000 | 1.1886 |
| 0.7013 | 2.6554 | 13200 | 1.2076 |
| 0.6907 | 2.6956 | 13400 | 1.1883 |
| 0.6833 | 2.7359 | 13600 | 1.1965 |
| 0.6928 | 2.7761 | 13800 | 1.2085 |
| 0.6774 | 2.8163 | 14000 | 1.1977 |
| 0.6861 | 2.8566 | 14200 | 1.2152 |
| 0.6795 | 2.8968 | 14400 | 1.2142 |
| 0.6679 | 2.9370 | 14600 | 1.2088 |
| 0.6551 | 2.9773 | 14800 | 1.2272 |
| 0.6599 | 3.0175 | 15000 | 1.2190 |
| 0.6443 | 3.0577 | 15200 | 1.2301 |
| 0.6464 | 3.0980 | 15400 | 1.2363 |
| 0.6416 | 3.1382 | 15600 | 1.2255 |
| 0.6479 | 3.1784 | 15800 | 1.2394 |
| 0.6366 | 3.2187 | 16000 | 1.2341 |
| 0.6365 | 3.2589 | 16200 | 1.2461 |
| 0.6348 | 3.2991 | 16400 | 1.2379 |
| 0.6372 | 3.3394 | 16600 | 1.2372 |
| 0.6213 | 3.3796 | 16800 | 1.2410 |
| 0.6293 | 3.4198 | 17000 | 1.2479 |
| 0.6212 | 3.4601 | 17200 | 1.2410 |
| 0.6295 | 3.5003 | 17400 | 1.2473 |
| 0.6239 | 3.5405 | 17600 | 1.2542 |
| 0.6175 | 3.5808 | 17800 | 1.2481 |
| 0.6156 | 3.6210 | 18000 | 1.2608 |
| 0.614 | 3.6612 | 18200 | 1.2660 |
| 0.6072 | 3.7015 | 18400 | 1.2581 |
| 0.5974 | 3.7417 | 18600 | 1.2547 |
| 0.603 | 3.7819 | 18800 | 1.2671 |
| 0.5953 | 3.8222 | 19000 | 1.2588 |
| 0.5931 | 3.8624 | 19200 | 1.2762 |
| 0.5972 | 3.9026 | 19400 | 1.2587 |
| 0.5873 | 3.9429 | 19600 | 1.2870 |
| 0.592 | 3.9831 | 19800 | 1.2598 |
| 0.5851 | 4.0233 | 20000 | 1.2815 |
| 0.5684 | 4.0636 | 20200 | 1.2853 |
| 0.5758 | 4.1038 | 20400 | 1.2815 |
| 0.5803 | 4.1440 | 20600 | 1.2781 |
| 0.5668 | 4.1843 | 20800 | 1.2832 |
| 0.5659 | 4.2245 | 21000 | 1.2807 |
| 0.5687 | 4.2647 | 21200 | 1.2854 |
| 0.5711 | 4.3050 | 21400 | 1.2997 |
| 0.5668 | 4.3452 | 21600 | 1.2976 |
| 0.5601 | 4.3854 | 21800 | 1.2830 |
| 0.5631 | 4.4257 | 22000 | 1.2915 |
| 0.5633 | 4.4659 | 22200 | 1.3009 |
| 0.5596 | 4.5061 | 22400 | 1.2926 |
| 0.5572 | 4.5464 | 22600 | 1.2954 |
| 0.5497 | 4.5866 | 22800 | 1.3009 |
| 0.5523 | 4.6268 | 23000 | 1.3114 |
| 0.544 | 4.6671 | 23200 | 1.3007 |
| 0.5465 | 4.7073 | 23400 | 1.2887 |
| 0.5452 | 4.7475 | 23600 | 1.3136 |
| 0.5435 | 4.7878 | 23800 | 1.3094 |
| 0.5368 | 4.8280 | 24000 | 1.3141 |
| 0.5359 | 4.8682 | 24200 | 1.3112 |
| 0.5352 | 4.9085 | 24400 | 1.3126 |
| 0.5411 | 4.9487 | 24600 | 1.3149 |
| 0.5357 | 4.9889 | 24800 | 1.3144 |
| 0.5245 | 5.0292 | 25000 | 1.3235 |
| 0.5211 | 5.0694 | 25200 | 1.3211 |
| 0.5226 | 5.1096 | 25400 | 1.3162 |
| 0.5263 | 5.1499 | 25600 | 1.3308 |
| 0.5242 | 5.1901 | 25800 | 1.3286 |
| 0.5253 | 5.2303 | 26000 | 1.3320 |
| 0.5215 | 5.2706 | 26200 | 1.3249 |
| 0.519 | 5.3108 | 26400 | 1.3330 |
| 0.5162 | 5.3510 | 26600 | 1.3224 |
| 0.5123 | 5.3913 | 26800 | 1.3270 |
| 0.5107 | 5.4315 | 27000 | 1.3291 |
| 0.5161 | 5.4717 | 27200 | 1.3360 |
| 0.515 | 5.5120 | 27400 | 1.3358 |
| 0.5137 | 5.5522 | 27600 | 1.3360 |
| 0.5201 | 5.5924 | 27800 | 1.3405 |
| 0.5001 | 5.6327 | 28000 | 1.3359 |
| 0.5032 | 5.6729 | 28200 | 1.3253 |
| 0.4985 | 5.7131 | 28400 | 1.3420 |
| 0.4993 | 5.7534 | 28600 | 1.3410 |
| 0.4964 | 5.7936 | 28800 | 1.3407 |
| 0.5148 | 5.8338 | 29000 | 1.3304 |
| 0.4968 | 5.8741 | 29200 | 1.3385 |
| 0.4998 | 5.9143 | 29400 | 1.3413 |
| 0.4905 | 5.9545 | 29600 | 1.3524 |
| 0.4937 | 5.9948 | 29800 | 1.3509 |
| 0.4899 | 6.0350 | 30000 | 1.3423 |
| 0.4985 | 6.0752 | 30200 | 1.3526 |
| 0.4914 | 6.1155 | 30400 | 1.3515 |
| 0.4885 | 6.1557 | 30600 | 1.3554 |
| 0.4904 | 6.1959 | 30800 | 1.3446 |
| 0.4839 | 6.2362 | 31000 | 1.3584 |
| 0.4854 | 6.2764 | 31200 | 1.3497 |
| 0.4828 | 6.3166 | 31400 | 1.3624 |
| 0.4878 | 6.3569 | 31600 | 1.3430 |
| 0.4862 | 6.3971 | 31800 | 1.3530 |
| 0.4844 | 6.4373 | 32000 | 1.3559 |
| 0.4713 | 6.4776 | 32200 | 1.3592 |
| 0.4841 | 6.5178 | 32400 | 1.3537 |
| 0.4834 | 6.5580 | 32600 | 1.3569 |
| 0.4774 | 6.5983 | 32800 | 1.3620 |
| 0.4808 | 6.6385 | 33000 | 1.3557 |
| 0.481 | 6.6787 | 33200 | 1.3602 |
| 0.4725 | 6.7190 | 33400 | 1.3667 |
| 0.4752 | 6.7592 | 33600 | 1.3612 |
| 0.4698 | 6.7994 | 33800 | 1.3568 |
| 0.4717 | 6.8397 | 34000 | 1.3703 |
| 0.4723 | 6.8799 | 34200 | 1.3598 |
| 0.4721 | 6.9201 | 34400 | 1.3538 |
| 0.4777 | 6.9604 | 34600 | 1.3646 |
| 0.4815 | 7.0006 | 34800 | 1.3581 |
| 0.4674 | 7.0408 | 35000 | 1.3688 |
| 0.4658 | 7.0811 | 35200 | 1.3728 |
| 0.4634 | 7.1213 | 35400 | 1.3690 |
| 0.4713 | 7.1615 | 35600 | 1.3664 |
| 0.4709 | 7.2018 | 35800 | 1.3719 |
| 0.4606 | 7.2420 | 36000 | 1.3700 |
| 0.4583 | 7.2822 | 36200 | 1.3702 |
| 0.4599 | 7.3225 | 36400 | 1.3719 |
| 0.469 | 7.3627 | 36600 | 1.3646 |
| 0.4662 | 7.4029 | 36800 | 1.3622 |
| 0.4682 | 7.4432 | 37000 | 1.3662 |
| 0.47 | 7.4834 | 37200 | 1.3695 |
| 0.4653 | 7.5236 | 37400 | 1.3731 |
| 0.4676 | 7.5639 | 37600 | 1.3667 |
| 0.4689 | 7.6041 | 37800 | 1.3702 |
| 0.4675 | 7.6443 | 38000 | 1.3699 |
| 0.4614 | 7.6846 | 38200 | 1.3753 |
| 0.4622 | 7.7248 | 38400 | 1.3687 |
| 0.4662 | 7.7650 | 38600 | 1.3731 |
| 0.4609 | 7.8053 | 38800 | 1.3667 |
| 0.4661 | 7.8455 | 39000 | 1.3732 |
| 0.4605 | 7.8857 | 39200 | 1.3692 |
| 0.4649 | 7.9260 | 39400 | 1.3716 |
| 0.463 | 7.9662 | 39600 | 1.3692 |
Base model
meta-llama/Llama-3.2-3B-Instruct