MagicQuillV2 / app.py
LiuZichen's picture
Update app.py
df751e6 verified
import subprocess
import shlex
import sys
import os
import tempfile
import numpy as np
import io
import base64
import json
import uvicorn
import torch
from PIL import Image
# Install the custom component if needed
subprocess.run(
shlex.split(
"pip install ./gradio_magicquillv2-0.0.1-py3-none-any.whl"
)
)
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.concurrency import run_in_threadpool
from fastapi.middleware.cors import CORSMiddleware
from gradio_client import Client, handle_file
from gradio_magicquillv2 import MagicQuillV2
from util import (
read_base64_image as read_base64_image_utils,
tensor_to_base64,
get_mask_bbox
)
# --- Configuration ---
# Set this to the URL of your backend Space (running app_backend.py)
BACKEND_URL = "LiuZichen/MagicQuillV2"
SAM_URL = "LiuZichen/MagicQuillHelper"
print(f"Target Backend URL: {BACKEND_URL}")
# We still initialize SAM client globally as it might not require ZeroGPU quotas
# or is a helper CPU space.
print(f"Connecting to SAM client at: {SAM_URL}")
try:
sam_client = Client(SAM_URL)
except Exception as e:
print(f"Failed to connect to SAM client: {e}")
sam_client = None
def get_zerogpu_headers(request_headers):
"""
Extracts ZeroGPU specific headers from the incoming request headers.
These are required to forward the user's quota token to the backend.
"""
headers = {}
if request_headers:
# These are the headers HF injects for ZeroGPU authentication and tracking
target_headers = [
"x-ip-token",
"x-zerogpu-token",
"x-zerogpu-uuid",
"authorization",
"cookie"
]
for h in target_headers:
val = request_headers.get(h)
if val:
headers[h] = val
return headers
def generate_image_handler(x, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg, request: gr.Request):
"""
Handler for the Gradio UI.
Note the 'request: gr.Request' argument - Gradio automatically injects this.
"""
merged_image = x['from_frontend']['img']
total_mask = x['from_frontend']['total_mask']
original_image = x['from_frontend']['original_image']
add_color_image = x['from_frontend']['add_color_image']
add_edge_mask = x['from_frontend']['add_edge_mask']
remove_edge_mask = x['from_frontend']['remove_edge_mask']
fill_mask = x['from_frontend']['fill_mask']
add_prop_image = x['from_frontend']['add_prop_image']
positive_prompt = x['from_backend']['prompt']
forward_headers = get_zerogpu_headers(request.headers)
print(f"Debug: Received headers keys: {list(request.headers.keys())}")
print(forward_headers)
try:
# 2. Instantiate a client specifically for this request with the forwarded headers.
# This ensures the backend sees the 'x-zerogpu-token' of the user, not the server.
# gradio_client caches schemas, so re-init is relatively cheap but necessary for headers.
client = Client(BACKEND_URL, headers=forward_headers)
# Call the backend API
res_base64 = client.predict(
merged_image, # merged_image
total_mask, # total_mask
original_image, # original_image
add_color_image, # add_color_image
add_edge_mask, # add_edge_mask
remove_edge_mask, # remove_edge_mask
fill_mask, # fill_mask
add_prop_image, # add_prop_image
positive_prompt, # positive_prompt
negative_prompt, # negative_prompt
fine_edge, # fine_edge
fix_perspective, # fix_perspective
grow_size, # grow_size
edge_strength, # edge_strength
color_strength, # color_strength
local_strength, # local_strength
seed, # seed
steps, # steps
cfg, # cfg
api_name="/generate"
)
x["from_backend"]["generated_image"] = res_base64
except Exception as e:
print(f"Error in generation: {e}")
x["from_backend"]["generated_image"] = None
return x
# --- Gradio UI ---
with gr.Blocks(title="MagicQuill V2") as demo:
with gr.Row(elem_classes="row"):
text = gr.Markdown(
"""
# Welcome to MagicQuill V2! Give us a [GitHub star](https://github.com/zliucz/magicquillv2) if you are interested.
Click the [link](https://magicquill.art/v2) to view our demo and tutorial. The paper is on [ArXiv](https://arxiv.org/abs/2512.03046) now. The [ZeroGPU](https://huggingface.co/docs/hub/spaces-zerogpu) quota is 4 minutes per day for normal users and 25 minutes per day for pro users.
""")
with gr.Row():
ms = MagicQuillV2()
with gr.Row():
with gr.Column():
btn = gr.Button("Run", variant="primary")
with gr.Column():
with gr.Accordion("parameters", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", value="", interactive=True)
fine_edge = gr.Radio(label="Fine Edge", choices=['enable', 'disable'], value='disable', interactive=True)
fix_perspective = gr.Radio(label="Fix Perspective", choices=['enable', 'disable'], value='disable', interactive=True)
grow_size = gr.Slider(label="Grow Size", minimum=10, maximum=100, value=50, step=1, interactive=True)
edge_strength = gr.Slider(label="Edge Strength", minimum=0.0, maximum=5.0, value=0.6, step=0.01, interactive=True)
color_strength = gr.Slider(label="Color Strength", minimum=0.0, maximum=5.0, value=1.5, step=0.01, interactive=True)
local_strength = gr.Slider(label="Local Strength", minimum=0.0, maximum=5.0, value=1.0, step=0.01, interactive=True)
seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True)
steps = gr.Slider(label="Steps", minimum=0, maximum=50, value=20, interactive=True)
cfg = gr.Slider(label="CFG", minimum=0.0, maximum=20.0, value=3.5, step=0.1, interactive=True)
btn.click(
generate_image_handler,
# Note: We do NOT need to explicitly add 'request' to inputs here.
# Gradio handles type hinting for gr.Request automatically.
inputs=[ms, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg],
outputs=ms
)
# --- FastAPI App ---
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def get_root_url(request: Request, route_path: str, root_path: str | None):
return root_path
gr.route_utils.get_root_url = get_root_url
@app.post("/magic_quill/process_background_img")
async def process_background_img(request: Request):
img = await request.json()
from util import process_background
# process_background returns tensor [1, H, W, 3] in uint8 or float
resized_img_tensor = process_background(img)
# tensor_to_base64 from util expects tensor
resized_img_base64 = "data:image/webp;base64," + tensor_to_base64(
resized_img_tensor,
quality=80,
method=6
)
return resized_img_base64
@app.post("/magic_quill/segmentation")
async def segmentation(request: Request):
json_data = await request.json()
image_base64 = json_data.get("image", None)
coordinates_positive = json_data.get("coordinates_positive", None)
coordinates_negative = json_data.get("coordinates_negative", None)
bboxes = json_data.get("bboxes", None)
if sam_client is None:
return {"error": "sam client not initialized"}
# Process coordinates and bboxes
pos_coordinates = None
if coordinates_positive and len(coordinates_positive) > 0:
pos_coordinates = []
for coord in coordinates_positive:
coord['x'] = int(round(coord['x']))
coord['y'] = int(round(coord['y']))
pos_coordinates.append({'x': coord['x'], 'y': coord['y']})
pos_coordinates = json.dumps(pos_coordinates)
neg_coordinates = None
if coordinates_negative and len(coordinates_negative) > 0:
neg_coordinates = []
for coord in coordinates_negative:
coord['x'] = int(round(coord['x']))
coord['y'] = int(round(coord['y']))
neg_coordinates.append({'x': coord['x'], 'y': coord['y']})
neg_coordinates = json.dumps(neg_coordinates)
bboxes_xyxy = None
if bboxes and len(bboxes) > 0:
valid_bboxes = []
for bbox in bboxes:
if (bbox.get("startX") is None or
bbox.get("startY") is None or
bbox.get("endX") is None or
bbox.get("endY") is None):
continue
else:
x_min = max(min(int(bbox["startX"]), int(bbox["endX"])), 0)
y_min = max(min(int(bbox["startY"]), int(bbox["endY"])), 0)
x_max = int(bbox["startX"]) if int(bbox["startX"]) > int(bbox["endX"]) else int(bbox["endX"])
y_max = int(bbox["startY"]) if int(bbox["startY"]) > int(bbox["endY"]) else int(bbox["endY"])
valid_bboxes.append((x_min, y_min, x_max, y_max))
bboxes_xyxy = []
for bbox in valid_bboxes:
x_min, y_min, x_max, y_max = bbox
bboxes_xyxy.append((x_min, y_min, x_max, y_max))
if bboxes_xyxy:
bboxes_xyxy = json.dumps(bboxes_xyxy)
print(f"Segmentation request: pos={pos_coordinates}, neg={neg_coordinates}, bboxes={bboxes_xyxy}")
try:
# Save base64 image to temp file
image_bytes = read_base64_image_utils(image_base64)
pil_image = Image.open(image_bytes)
# Resize for faster transmission (short side 512)
original_size = pil_image.size
w, h = original_size
scale = 512 / min(w, h)
if scale < 1:
new_w = int(w * scale)
new_h = int(h * scale)
pil_image_resized = pil_image.resize((new_w, new_h), Image.LANCZOS)
print(f"Resized image for segmentation: {original_size} -> {(new_w, new_h)}")
# Adjust coordinates and bboxes according to scale
if pos_coordinates:
pos_coords_list = json.loads(pos_coordinates)
for coord in pos_coords_list:
coord['x'] = int(coord['x'] * scale)
coord['y'] = int(coord['y'] * scale)
pos_coordinates = json.dumps(pos_coords_list)
if neg_coordinates:
neg_coords_list = json.loads(neg_coordinates)
for coord in neg_coords_list:
coord['x'] = int(coord['x'] * scale)
coord['y'] = int(coord['y'] * scale)
neg_coordinates = json.dumps(neg_coords_list)
if bboxes_xyxy:
bboxes_list = json.loads(bboxes_xyxy)
new_bboxes = []
for bbox in bboxes_list:
new_bboxes.append((
int(bbox[0] * scale),
int(bbox[1] * scale),
int(bbox[2] * scale),
int(bbox[3] * scale)
))
bboxes_xyxy = json.dumps(new_bboxes)
else:
pil_image_resized = pil_image
scale = 1.0
with tempfile.NamedTemporaryFile(suffix=".webp", delete=False) as temp_in:
pil_image_resized.save(temp_in.name, format="WEBP", quality=80)
temp_in_path = temp_in.name
# Execute segmentation via Client
result_path = await run_in_threadpool(
sam_client.predict,
handle_file(temp_in_path),
pos_coordinates,
neg_coordinates,
bboxes_xyxy,
api_name="/segment"
)
os.unlink(temp_in_path)
if isinstance(result_path, (list, tuple)):
result_path = result_path[0]
if not result_path or not os.path.exists(result_path):
raise RuntimeError("Client returned invalid result path")
mask_pil = Image.open(result_path)
if mask_pil.mode != 'L':
mask_pil = mask_pil.convert('L')
pil_image = pil_image.convert("RGB")
if pil_image.size != mask_pil.size:
mask_pil = mask_pil.resize(pil_image.size, Image.NEAREST)
r, g, b = pil_image.split()
res_pil = Image.merge("RGBA", (r, g, b, mask_pil))
mask_tensor = torch.from_numpy(np.array(mask_pil) / 255.0).float().unsqueeze(0)
mask_bbox = get_mask_bbox(mask_tensor)
if mask_bbox:
x_min, y_min, x_max, y_max = mask_bbox
seg_bbox = {'startX': x_min, 'startY': y_min, 'endX': x_max, 'endY': y_max}
else:
seg_bbox = {'startX': 0, 'startY': 0, 'endX': 0, 'endY': 0}
buffered = io.BytesIO()
res_pil.save(buffered, format="PNG")
image_base64_res = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {
"error": False,
"segmentation_image": "data:image/png;base64," + image_base64_res,
"segmentation_bbox": seg_bbox
}
except Exception as e:
print(f"Error in segmentation: {e}")
return {"error": str(e)}
# Mount the Gradio app
# Reduce concurrency for ZeroGPU to prevent rate limiting
demo.queue(default_concurrency_limit=10, max_size=20)
app = gr.mount_gradio_app(app, demo, path="/", root_path="/demo")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)