Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import re | |
| import traceback | |
| from datetime import datetime | |
| from typing import Any, Literal | |
| import gradio as gr | |
| import numpy as np | |
| import requests | |
| import spaces | |
| import torch | |
| from PIL import Image, ImageDraw | |
| from pydantic import BaseModel, Field | |
| from transformers import AutoProcessor | |
| from transformers.models.auto.modeling_auto import AutoModelForImageTextToText | |
| from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize | |
| # --- Configuration --- | |
| MODEL_ID = "Hcompany/Holo1.5-7B" | |
| # --- Model and Processor Loading (Load once) --- | |
| print(f"Loading model and processor for {MODEL_ID}...") | |
| model = None | |
| processor = None | |
| model_loaded = False | |
| load_error_message = "" | |
| try: | |
| model = AutoModelForImageTextToText.from_pretrained( | |
| MODEL_ID, torch_dtype=torch.bfloat16, trust_remote_code=True | |
| ).to("cuda") | |
| processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model_loaded = True | |
| print("Model and processor loaded successfully.") | |
| except Exception as e: | |
| load_error_message = ( | |
| f"Error loading model/processor: {e}\n" | |
| "This might be due to network issues, an incorrect model ID, or missing dependencies (like flash_attention_2 if enabled by default in some config).\n" | |
| "Ensure you have a stable internet connection and the necessary libraries installed." | |
| ) | |
| print(load_error_message) | |
| title = "Holo1.5-7B: Localization VLM Demo" | |
| description = """ | |
| This demo showcases [**Holo1.5-7B**](https://huggingface.co/Hcompany/Holo1.5-7B), a new version of the Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct. | |
| It's designed to perform complex navigation tasks in Web, Android, and Desktop interfaces. | |
| **How to use:** | |
| 1. Upload an image (e.g., a screenshot of a UI, see example below). | |
| 2. Provide a target UI element (e.g., "Docs tab"). | |
| 3. The model will predict the coordinates of the element on the screenshot. | |
| The model processor resizes your input image. Coordinates are relative to this resized image. | |
| """ | |
| def array_to_image_path(image_array): | |
| if image_array is None: | |
| raise ValueError("No image provided. Please upload an image before submitting.") | |
| # Convert numpy array to PIL Image | |
| img = Image.fromarray(np.uint8(image_array)) | |
| # Generate a unique filename using timestamp | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| filename = f"image_{timestamp}.png" | |
| # Save the image | |
| img.save(filename) | |
| # Get the full path of the saved image | |
| full_path = os.path.abspath(filename) | |
| return full_path | |
| LOCALIZATION_PROMPT: str = """Localize an element on the GUI image according to the provided target and output a click position. | |
| * Only output the click position, do not output any other text. | |
| * The click position should be in the format 'Click(x, y)' with x: num pixels from the left edge and y: num pixels from the top edge | |
| Your target is:""" | |
| class ClickAbsoluteAction(BaseModel): | |
| """Click at absolute coordinates.""" | |
| action: Literal["click_absolute"] = "click_absolute" | |
| x: int = Field(description="The x coordinate, number of pixels from the left edge.") | |
| y: int = Field(description="The y coordinate, number of pixels from the top edge.") | |
| def get_localization_prompt(component, image, step=1): | |
| """ | |
| Get the prompt for the localization task. | |
| - component: The component to localize | |
| - image: The current screenshot of the web page | |
| - step: The current step of the task | |
| """ | |
| return [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image, | |
| }, | |
| {"type": "text", "text": LOCALIZATION_PROMPT + "\n" + component}, | |
| ], | |
| }, | |
| ] | |
| def array_to_image(image_array: np.ndarray) -> Image.Image: | |
| if image_array is None: | |
| raise ValueError("No image provided. Please upload an image before submitting.") | |
| # Convert numpy array to PIL Image | |
| img = Image.fromarray(np.uint8(image_array)) | |
| return img | |
| def run_inference_localization( | |
| messages_for_template: list[dict[str, Any]], pil_image_for_processing: Image.Image | |
| ) -> str: | |
| model.to("cuda") | |
| torch.cuda.set_device(0) | |
| """ | |
| Runs inference using the Holo1 model. | |
| - messages_for_template: The prompt structure, potentially including the PIL image object | |
| (which apply_chat_template converts to an image tag). | |
| - pil_image_for_processing: The actual PIL image to be processed into tensors. | |
| """ | |
| # 1. Apply chat template to messages. This will create the text part of the prompt, | |
| # including image tags if the image was part of `messages_for_template`. | |
| text_prompt = processor.apply_chat_template(messages_for_template, tokenize=False, add_generation_prompt=True) | |
| # 2. Process text and image together to get model inputs | |
| inputs = processor( | |
| text=[text_prompt], | |
| images=[pil_image_for_processing], # Provide the actual image data here | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to(model.device) | |
| # 3. Generate response | |
| # Using do_sample=False for more deterministic output, as in the model card's structured output example | |
| generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False) | |
| # 4. Trim input_ids from generated_ids to get only the generated part | |
| generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
| # 5. Decode the generated tokens | |
| decoded_output = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return decoded_output[0] if decoded_output else "" | |
| # --- Gradio processing function --- | |
| def localize(input_numpy_image: np.ndarray, task: str) -> str: | |
| # if not model_loaded or not processor or not model: | |
| # return f"Model not loaded. Error: {load_error_message}", None | |
| # if not input_pil_image: | |
| # return "No image provided. Please upload an image.", None | |
| # if not task or task.strip() == "": | |
| # return "No task provided. Please type an task.", input_pil_image.copy().convert("RGB") | |
| # 1. Prepare image: Resize according to model's image processor's expected properties | |
| # This ensures predicted coordinates match the (resized) image dimensions. | |
| input_pil_image = array_to_image(input_numpy_image) | |
| assert isinstance(input_pil_image, Image.Image) | |
| image_proc_config = processor.image_processor | |
| try: | |
| resized_height, resized_width = smart_resize( | |
| input_pil_image.height, | |
| input_pil_image.width, | |
| factor=image_proc_config.patch_size * image_proc_config.merge_size, | |
| min_pixels=image_proc_config.min_pixels, | |
| max_pixels=image_proc_config.max_pixels, | |
| ) | |
| # Using LANCZOS for resampling as it's generally good for downscaling. | |
| # The model card used `resample=None`, which might imply nearest or default. | |
| # For visual quality in the demo, LANCZOS is reasonable. | |
| resized_image = input_pil_image.resize( | |
| size=(resized_width, resized_height), | |
| resample=Image.Resampling.LANCZOS, # type: ignore | |
| ) | |
| except Exception as e: | |
| print(f"Error resizing image: {e}") | |
| return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB") | |
| # 2. Create the prompt using the resized image (for correct image tagging context) and task | |
| prompt = get_localization_prompt(task, resized_image, step=1) | |
| print("Prompt:") | |
| print(prompt) | |
| # 3. Run inference | |
| # Pass `messages` (which includes the image object for template processing) | |
| # and `resized_image` (for actual tensor conversion). | |
| try: | |
| localization = run_inference_localization(prompt, resized_image) | |
| except Exception as e: | |
| print(f"Error during model inference: {e}") | |
| return f"Error during model inference: {e}", resized_image.copy().convert("RGB") | |
| # 4) Parse coordinates and draw marker | |
| output_image_with_click = resized_image.copy().convert("RGB") | |
| match = re.search(r"Click\((\d+),\s*(\d+)\)", localization) | |
| if match: | |
| try: | |
| x = int(match.group(1)) | |
| y = int(match.group(2)) | |
| draw = ImageDraw.Draw(output_image_with_click) | |
| radius = max(5, min(resized_width // 100, resized_height // 100, 15)) | |
| bbox = (x - radius, y - radius, x + radius, y + radius) | |
| draw.ellipse(bbox, outline="red", width=max(2, radius // 4)) | |
| print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})") | |
| except Exception as e: | |
| print(f"Error drawing on image: {e}") | |
| traceback.print_exc() | |
| else: | |
| print(f"Could not parse 'Click(x, y)' from model output: {localization}") | |
| return localization, output_image_with_click | |
| # --- Load Example Data --- | |
| example_image_url = "https://huggingface.co/spaces/Hcompany/Holo1.5-Localization/resolve/main/desktop_3.png" | |
| example_image = Image.open(requests.get(example_image_url, stream=True).raw) | |
| example_task = "Email quote for Hyundai Kona" | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>") | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image_component = gr.Image(label="Input UI Image", height=400) | |
| task_component = gr.Textbox( | |
| label="component", | |
| placeholder="Email quote for Hyundai Kona", | |
| info="Describe the UI component to find.", | |
| ) | |
| submit_button = gr.Button("Localize", variant="primary") | |
| with gr.Column(): | |
| output_coords_component = gr.Textbox(label="Localization Step") | |
| output_image_component = gr.Image( | |
| type="pil", label="Image with coordinates of the component", height=400, interactive=False | |
| ) | |
| submit_button.click( | |
| localize, [input_image_component, task_component], [output_coords_component, output_image_component] | |
| ) | |
| gr.Examples( | |
| examples=[[example_image, example_task]], | |
| inputs=[input_image_component, task_component], | |
| outputs=[output_coords_component, output_image_component], | |
| fn=localize, | |
| cache_examples="lazy", | |
| ) | |
| demo.queue(api_open=False) | |
| demo.launch(debug=True) | |