anderson-ufrj
refactor(agents): migrate Anita agent to new BaseAgent pattern
f2c26ae
"""
Module: agents.anita
Codinome: Anita Garibaldi - Roteadora Semântica
Description: Agent specialized in pattern analysis and correlation detection in government data
Author: Anderson H. Silva
Date: 2025-01-24
License: Proprietary - All rights reserved
"""
import asyncio
from datetime import datetime, timedelta
from typing import Any, Dict, List, Optional, Tuple
from dataclasses import dataclass
from collections import defaultdict, Counter
import numpy as np
from pydantic import BaseModel, Field as PydanticField
from src.agents.deodoro import BaseAgent, AgentContext, AgentMessage, AgentResponse
from src.core import get_logger, AgentStatus
from src.core.exceptions import AgentExecutionError, DataAnalysisError
from src.tools.transparency_api import TransparencyAPIClient, TransparencyAPIFilter
from src.ml.spectral_analyzer import SpectralAnalyzer, SpectralFeatures, PeriodicPattern
@dataclass
class PatternResult:
"""Result of pattern analysis."""
pattern_type: str
description: str
significance: float # 0.0 to 1.0
confidence: float # 0.0 to 1.0
insights: List[str]
evidence: Dict[str, Any]
recommendations: List[str]
entities_involved: List[Dict[str, Any]]
trend_direction: Optional[str] = None # "increasing", "decreasing", "stable"
correlation_strength: Optional[float] = None
@dataclass
class CorrelationResult:
"""Result of correlation analysis."""
correlation_type: str
variables: List[str]
correlation_coefficient: float
p_value: Optional[float]
significance_level: str # "high", "medium", "low"
description: str
business_interpretation: str
evidence: Dict[str, Any]
recommendations: List[str]
class AnalysisRequest(BaseModel):
"""Request for pattern and correlation analysis."""
query: str = PydanticField(description="Natural language analysis query")
analysis_types: Optional[List[str]] = PydanticField(default=None, description="Types of analysis to perform")
time_period: Optional[str] = PydanticField(default="12_months", description="Time period for analysis")
organization_codes: Optional[List[str]] = PydanticField(default=None, description="Organizations to analyze")
focus_areas: Optional[List[str]] = PydanticField(default=None, description="Specific areas to focus on")
comparison_mode: bool = PydanticField(default=False, description="Enable comparison between entities")
max_records: int = PydanticField(default=200, description="Maximum records for analysis")
class AnalystAgent(BaseAgent):
"""
Agent specialized in pattern analysis and correlation detection in government data.
Capabilities:
- Spending trend analysis over time
- Organizational spending pattern comparison
- Vendor market behavior analysis
- Seasonal pattern detection
- Contract value distribution analysis
- Cross-organizational correlation analysis
- Performance and efficiency metrics
- Predictive trend modeling
"""
def __init__(
self,
min_correlation_threshold: float = 0.3,
significance_threshold: float = 0.05,
trend_detection_window: int = 6, # months
):
"""
Initialize the Analyst Agent.
Args:
min_correlation_threshold: Minimum correlation coefficient to report
significance_threshold: P-value threshold for statistical significance
trend_detection_window: Number of periods for trend analysis
"""
super().__init__(
name="Anita",
description="Anita Garibaldi - Agent specialized in pattern analysis and correlation detection",
capabilities=[
"spending_trend_analysis",
"organizational_comparison",
"vendor_behavior_analysis",
"seasonal_pattern_detection",
"value_distribution_analysis",
"correlation_analysis",
"efficiency_metrics",
"predictive_modeling"
],
max_retries=3,
timeout=60
)
self.correlation_threshold = min_correlation_threshold
self.significance_threshold = significance_threshold
self.trend_window = trend_detection_window
# Initialize spectral analyzer for frequency-domain analysis
self.spectral_analyzer = SpectralAnalyzer()
# Analysis methods registry
self.analysis_methods = {
"spending_trends": self._analyze_spending_trends,
"organizational_patterns": self._analyze_organizational_patterns,
"vendor_behavior": self._analyze_vendor_behavior,
"seasonal_patterns": self._analyze_seasonal_patterns,
"spectral_patterns": self._analyze_spectral_patterns,
"cross_spectral_analysis": self._perform_cross_spectral_analysis,
"value_distribution": self._analyze_value_distribution,
"correlation_analysis": self._perform_correlation_analysis,
"efficiency_metrics": self._calculate_efficiency_metrics,
}
self.logger.info(
"analyst_agent_initialized",
agent_name=self.name,
correlation_threshold=min_correlation_threshold,
significance_threshold=significance_threshold,
)
async def initialize(self) -> None:
"""Initialize agent resources."""
self.logger.info(f"{self.name} agent initialized")
async def shutdown(self) -> None:
"""Cleanup agent resources."""
self.logger.info(f"{self.name} agent shutting down")
async def process(
self,
message: AgentMessage,
context: AgentContext
) -> AgentResponse:
"""
Process pattern analysis request and return insights.
Args:
message: Analysis request message
context: Agent execution context
Returns:
AgentResponse with patterns and correlations
"""
try:
self.logger.info(
"analysis_started",
investigation_id=context.investigation_id,
agent_name=self.name,
action=message.action,
)
# Parse analysis request
if message.action == "analyze":
request = AnalysisRequest(**message.payload)
else:
raise AgentExecutionError(
f"Unsupported action: {message.action}",
agent_id=self.name
)
# Fetch data for analysis
analysis_data = await self._fetch_analysis_data(request, context)
if not analysis_data:
return AgentResponse(
agent_name=self.name,
status=AgentStatus.COMPLETED,
result={
"status": "no_data",
"message": "No data found for the specified criteria",
"patterns": [],
"correlations": [],
"summary": {"total_records": 0, "patterns_found": 0}
},
metadata={"investigation_id": context.investigation_id}
)
# Perform pattern analysis
patterns = await self._run_pattern_analysis(analysis_data, request, context)
# Perform correlation analysis
correlations = await self._run_correlation_analysis(analysis_data, request, context)
# Generate insights and recommendations
insights = self._generate_insights(patterns, correlations, analysis_data)
# Create result message
result = {
"status": "completed",
"query": request.query,
"patterns": [self._pattern_to_dict(p) for p in patterns],
"correlations": [self._correlation_to_dict(c) for c in correlations],
"insights": insights,
"summary": self._generate_analysis_summary(analysis_data, patterns, correlations),
"metadata": {
"investigation_id": context.investigation_id,
"timestamp": datetime.utcnow().isoformat(),
"agent_name": self.name,
"records_analyzed": len(analysis_data),
"patterns_found": len(patterns),
"correlations_found": len(correlations),
}
}
self.logger.info(
"analysis_completed",
investigation_id=context.investigation_id,
records_analyzed=len(analysis_data),
patterns_found=len(patterns),
correlations_found=len(correlations),
)
return AgentResponse(
agent_name=self.name,
status=AgentStatus.COMPLETED,
result=result,
metadata={"investigation_id": context.investigation_id}
)
except Exception as e:
self.logger.error(
"analysis_failed",
investigation_id=context.investigation_id,
error=str(e),
agent_name=self.name,
)
return AgentResponse(
agent_name=self.name,
status=AgentStatus.ERROR,
error=str(e),
result={
"status": "error",
"error": str(e),
"investigation_id": context.investigation_id,
},
metadata={"investigation_id": context.investigation_id}
)
async def _fetch_analysis_data(
self,
request: AnalysisRequest,
context: AgentContext
) -> List[Dict[str, Any]]:
"""
Fetch comprehensive data for pattern analysis.
Args:
request: Analysis parameters
context: Agent context
Returns:
List of contract records for analysis
"""
all_contracts = []
# Expanded organization codes for broader analysis
org_codes = request.organization_codes or [
"26000", # Ministério da Saúde
"20000", # Presidência da República
"25000", # Ministério da Educação
"36000", # Ministério da Defesa
"44000", # Ministério do Desenvolvimento Social
"30000", # Ministério da Justiça
]
async with TransparencyAPIClient() as client:
for org_code in org_codes:
try:
# Fetch data for multiple months to enable trend analysis
for month in range(1, 13): # Full year
filters = TransparencyAPIFilter(
codigo_orgao=org_code,
ano=2024,
mes=month,
pagina=1,
tamanho_pagina=min(20, request.max_records // (len(org_codes) * 12))
)
response = await client.get_contracts(filters)
# Enrich each contract with metadata
for contract in response.data:
contract["_org_code"] = org_code
contract["_month"] = month
contract["_year"] = 2024
contract["_fetch_timestamp"] = datetime.utcnow().isoformat()
all_contracts.extend(response.data)
# Rate limiting consideration
await asyncio.sleep(0.1)
self.logger.info(
"organization_data_fetched",
org_code=org_code,
total_records=len([c for c in all_contracts if c.get("_org_code") == org_code]),
investigation_id=context.investigation_id,
)
except Exception as e:
self.logger.warning(
"organization_data_fetch_failed",
org_code=org_code,
error=str(e),
investigation_id=context.investigation_id,
)
continue
return all_contracts[:request.max_records]
async def _run_pattern_analysis(
self,
data: List[Dict[str, Any]],
request: AnalysisRequest,
context: AgentContext
) -> List[PatternResult]:
"""
Run pattern analysis algorithms on the data.
Args:
data: Contract records to analyze
request: Analysis parameters
context: Agent context
Returns:
List of detected patterns
"""
all_patterns = []
# Determine which analysis types to run
types_to_run = request.analysis_types or list(self.analysis_methods.keys())
types_to_run = [t for t in types_to_run if t != "correlation_analysis"] # Handle separately
for analysis_type in types_to_run:
if analysis_type in self.analysis_methods:
try:
method = self.analysis_methods[analysis_type]
patterns = await method(data, context)
all_patterns.extend(patterns)
self.logger.info(
"pattern_analysis_completed",
type=analysis_type,
patterns_found=len(patterns),
investigation_id=context.investigation_id,
)
except Exception as e:
self.logger.error(
"pattern_analysis_failed",
type=analysis_type,
error=str(e),
investigation_id=context.investigation_id,
)
# Sort patterns by significance
all_patterns.sort(key=lambda x: x.significance, reverse=True)
return all_patterns
async def _run_correlation_analysis(
self,
data: List[Dict[str, Any]],
request: AnalysisRequest,
context: AgentContext
) -> List[CorrelationResult]:
"""
Run correlation analysis on the data.
Args:
data: Contract records to analyze
request: Analysis parameters
context: Agent context
Returns:
List of detected correlations
"""
correlations = []
if "correlation_analysis" in (request.analysis_types or ["correlation_analysis"]):
try:
correlations = await self._perform_correlation_analysis(data, context)
self.logger.info(
"correlation_analysis_completed",
correlations_found=len(correlations),
investigation_id=context.investigation_id,
)
except Exception as e:
self.logger.error(
"correlation_analysis_failed",
error=str(e),
investigation_id=context.investigation_id,
)
return correlations
async def _analyze_spending_trends(
self,
data: List[Dict[str, Any]],
context: AgentContext
) -> List[PatternResult]:
"""Analyze spending trends over time."""
patterns = []
# Group spending by month
monthly_spending = defaultdict(float)
monthly_counts = defaultdict(int)
for contract in data:
month = contract.get("_month")
valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
if month and isinstance(valor, (int, float)):
monthly_spending[month] += float(valor)
monthly_counts[month] += 1
if len(monthly_spending) < 3:
return patterns
# Calculate trend
months = sorted(monthly_spending.keys())
values = [monthly_spending[m] for m in months]
# Simple linear regression for trend
x = np.array(range(len(months)))
y = np.array(values)
if len(x) > 1 and np.std(y) > 0:
correlation = np.corrcoef(x, y)[0, 1]
slope = np.polyfit(x, y, 1)[0]
# Determine trend direction and significance
if abs(correlation) > 0.5:
trend_direction = "increasing" if slope > 0 else "decreasing"
significance = abs(correlation)
pattern = PatternResult(
pattern_type="spending_trends",
description=f"Tendência de gastos {trend_direction} detectada",
significance=significance,
confidence=abs(correlation),
insights=[
f"Gastos apresentam tendência {trend_direction} com correlação de {correlation:.2f}",
f"Variação média mensal: R$ {slope:,.2f}",
f"Período analisado: {len(months)} meses",
],
evidence={
"monthly_spending": dict(monthly_spending),
"trend_correlation": correlation,
"monthly_slope": slope,
"total_value": sum(values),
"average_monthly": np.mean(values),
},
recommendations=[
"Investigar fatores que causam a tendência observada",
"Analisar planejamento orçamentário",
"Verificar sazonalidade nos gastos",
"Monitorar sustentabilidade da tendência",
],
entities_involved=[{
"type": "monthly_data",
"months_analyzed": len(months),
"total_contracts": sum(monthly_counts.values()),
}],
trend_direction=trend_direction,
correlation_strength=abs(correlation),
)
patterns.append(pattern)
return patterns
async def _analyze_organizational_patterns(
self,
data: List[Dict[str, Any]],
context: AgentContext
) -> List[PatternResult]:
"""Analyze spending patterns across organizations."""
patterns = []
# Group by organization
org_stats = defaultdict(lambda: {"total_value": 0, "count": 0, "contracts": []})
for contract in data:
org_code = contract.get("_org_code")
valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
if org_code and isinstance(valor, (int, float)):
org_stats[org_code]["total_value"] += float(valor)
org_stats[org_code]["count"] += 1
org_stats[org_code]["contracts"].append(contract)
if len(org_stats) < 2:
return patterns
# Calculate organization efficiency metrics
org_efficiency = {}
for org_code, stats in org_stats.items():
if stats["count"] > 0:
avg_contract_value = stats["total_value"] / stats["count"]
org_efficiency[org_code] = {
"avg_contract_value": avg_contract_value,
"total_value": stats["total_value"],
"contract_count": stats["count"],
"efficiency_ratio": stats["total_value"] / stats["count"],
}
# Find organizations with unusual patterns
avg_values = [eff["avg_contract_value"] for eff in org_efficiency.values()]
mean_avg = np.mean(avg_values)
std_avg = np.std(avg_values)
for org_code, efficiency in org_efficiency.items():
if std_avg > 0:
z_score = (efficiency["avg_contract_value"] - mean_avg) / std_avg
if abs(z_score) > 1.5: # Significant deviation
pattern_type = "high_value_contracts" if z_score > 0 else "low_value_contracts"
significance = min(abs(z_score) / 3.0, 1.0)
pattern = PatternResult(
pattern_type="organizational_patterns",
description=f"Padrão organizacional atípico: {org_code}",
significance=significance,
confidence=min(abs(z_score) / 2.0, 1.0),
insights=[
f"Organização {org_code} apresenta padrão atípico de contratação",
f"Valor médio por contrato: R$ {efficiency['avg_contract_value']:,.2f}",
f"Desvio da média geral: {z_score:.1f} desvios padrão",
],
evidence={
"organization_code": org_code,
"avg_contract_value": efficiency["avg_contract_value"],
"total_value": efficiency["total_value"],
"contract_count": efficiency["contract_count"],
"z_score": z_score,
"market_average": mean_avg,
},
recommendations=[
"Investigar critérios de contratação da organização",
"Comparar com organizações similares",
"Analisar eficiência dos processos",
"Verificar adequação dos valores contratados",
],
entities_involved=[{
"organization": org_code,
"total_contracts": efficiency["contract_count"],
"total_value": efficiency["total_value"],
}],
)
patterns.append(pattern)
return patterns
async def _analyze_vendor_behavior(
self,
data: List[Dict[str, Any]],
context: AgentContext
) -> List[PatternResult]:
"""Analyze vendor behavior patterns."""
patterns = []
# Group by vendor
vendor_stats = defaultdict(lambda: {
"contracts": [],
"total_value": 0,
"organizations": set(),
"months": set(),
})
for contract in data:
supplier = contract.get("fornecedor", {})
vendor_name = supplier.get("nome", "Unknown")
valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
org_code = contract.get("_org_code")
month = contract.get("_month")
if vendor_name != "Unknown" and isinstance(valor, (int, float)):
vendor_stats[vendor_name]["contracts"].append(contract)
vendor_stats[vendor_name]["total_value"] += float(valor)
if org_code:
vendor_stats[vendor_name]["organizations"].add(org_code)
if month:
vendor_stats[vendor_name]["months"].add(month)
# Analyze multi-organization vendors
for vendor_name, stats in vendor_stats.items():
org_count = len(stats["organizations"])
contract_count = len(stats["contracts"])
# Check for vendors working with multiple organizations
if org_count >= 3 and contract_count >= 5:
significance = min(org_count / 6.0, 1.0) # Normalize to max 6 orgs
pattern = PatternResult(
pattern_type="vendor_behavior",
description=f"Fornecedor multi-organizacional: {vendor_name}",
significance=significance,
confidence=min(contract_count / 10.0, 1.0),
insights=[
f"Fornecedor atua em {org_count} organizações diferentes",
f"Total de {contract_count} contratos",
f"Valor total: R$ {stats['total_value']:,.2f}",
f"Presença em {len(stats['months'])} meses diferentes",
],
evidence={
"vendor_name": vendor_name,
"organization_count": org_count,
"contract_count": contract_count,
"total_value": stats["total_value"],
"organizations": list(stats["organizations"]),
"months_active": len(stats["months"]),
},
recommendations=[
"Verificar especialização do fornecedor",
"Analisar competitividade dos processos",
"Investigar relacionamento com múltiplas organizações",
"Revisar histórico de performance",
],
entities_involved=[{
"vendor": vendor_name,
"organizations": list(stats["organizations"]),
"contract_count": contract_count,
}],
)
patterns.append(pattern)
return patterns
async def _analyze_seasonal_patterns(
self,
data: List[Dict[str, Any]],
context: AgentContext
) -> List[PatternResult]:
"""Analyze seasonal patterns in contracting."""
patterns = []
# Group by month
monthly_activity = defaultdict(lambda: {"count": 0, "value": 0})
for contract in data:
month = contract.get("_month")
valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
if month and isinstance(valor, (int, float)):
monthly_activity[month]["count"] += 1
monthly_activity[month]["value"] += float(valor)
if len(monthly_activity) < 6: # Need at least half year
return patterns
# Calculate monthly averages
months = sorted(monthly_activity.keys())
counts = [monthly_activity[m]["count"] for m in months]
values = [monthly_activity[m]["value"] for m in months]
# Detect end-of-year rush (December spike)
if 12 in monthly_activity and len(months) >= 6:
dec_count = monthly_activity[12]["count"]
avg_count = np.mean([monthly_activity[m]["count"] for m in months if m != 12])
if avg_count > 0:
dec_ratio = dec_count / avg_count
if dec_ratio > 1.5: # 50% above average
significance = min((dec_ratio - 1) / 2, 1.0)
pattern = PatternResult(
pattern_type="seasonal_patterns",
description="Padrão sazonal: concentração em dezembro",
significance=significance,
confidence=min(dec_ratio / 2.0, 1.0),
insights=[
f"Dezembro apresenta {dec_ratio:.1f}x mais contratos que a média",
f"Contratos em dezembro: {dec_count}",
f"Média mensal: {avg_count:.1f}",
"Possível correria de fim de ano orçamentário",
],
evidence={
"december_count": dec_count,
"average_monthly_count": avg_count,
"december_ratio": dec_ratio,
"monthly_distribution": dict(monthly_activity),
},
recommendations=[
"Melhorar planejamento anual de contratações",
"Distribuir contratações ao longo do ano",
"Investigar qualidade dos processos de fim de ano",
"Implementar cronograma de contratações",
],
entities_involved=[{
"pattern": "end_of_year_rush",
"affected_months": [12],
"intensity": dec_ratio,
}],
)
patterns.append(pattern)
return patterns
async def _analyze_value_distribution(
self,
data: List[Dict[str, Any]],
context: AgentContext
) -> List[PatternResult]:
"""Analyze contract value distribution patterns."""
patterns = []
# Extract contract values
values = []
for contract in data:
valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
if isinstance(valor, (int, float)) and valor > 0:
values.append(float(valor))
if len(values) < 10:
return patterns
# Calculate distribution statistics
values_array = np.array(values)
# Check for unusual distribution patterns
percentiles = np.percentile(values_array, [25, 50, 75, 90, 95, 99])
# Detect heavy concentration in specific value ranges
value_ranges = {
"micro": (0, 8000), # Dispensas
"small": (8000, 176000), # Convites
"medium": (176000, 1500000), # Tomadas de preço
"large": (1500000, float('inf')) # Concorrências
}
range_counts = {}
range_values = {}
for range_name, (min_val, max_val) in value_ranges.items():
count = sum(1 for v in values if min_val <= v < max_val)
total_val = sum(v for v in values if min_val <= v < max_val)
range_counts[range_name] = count
range_values[range_name] = total_val
total_contracts = len(values)
total_value = sum(values)
# Check for unusual concentrations
for range_name, count in range_counts.items():
percentage = count / total_contracts if total_contracts > 0 else 0
value_percentage = range_values[range_name] / total_value if total_value > 0 else 0
# Detect if one range dominates
if percentage > 0.7: # 70% of contracts in one range
significance = percentage
pattern = PatternResult(
pattern_type="value_distribution",
description=f"Concentração em contratos de valor {range_name}",
significance=significance,
confidence=percentage,
insights=[
f"{percentage:.1%} dos contratos estão na faixa {range_name}",
f"Representam {value_percentage:.1%} do valor total",
f"Total de {count} contratos nesta faixa",
f"Faixa de valores: R$ {value_ranges[range_name][0]:,.2f} - R$ {value_ranges[range_name][1]:,.2f}",
],
evidence={
"range_name": range_name,
"concentration_percentage": percentage * 100,
"value_percentage": value_percentage * 100,
"contract_count": count,
"range_limits": value_ranges[range_name],
"distribution": range_counts,
},
recommendations=[
"Analisar adequação dos valores contratados",
"Verificar se há fracionamento inadequado",
"Revisar modalidades licitatórias utilizadas",
"Comparar com benchmarks do setor",
],
entities_involved=[{
"value_range": range_name,
"contract_count": count,
"percentage": percentage * 100,
}],
)
patterns.append(pattern)
return patterns
async def _perform_correlation_analysis(
self,
data: List[Dict[str, Any]],
context: AgentContext
) -> List[CorrelationResult]:
"""Perform correlation analysis between variables."""
correlations = []
# Prepare data for correlation analysis
# Group by organization and month for time series
org_month_data = defaultdict(lambda: defaultdict(lambda: {"count": 0, "value": 0}))
for contract in data:
org_code = contract.get("_org_code")
month = contract.get("_month")
valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
if org_code and month and isinstance(valor, (int, float)):
org_month_data[org_code][month]["count"] += 1
org_month_data[org_code][month]["value"] += float(valor)
# Analyze correlation between contract count and average value
if len(org_month_data) >= 3:
monthly_counts = []
monthly_avg_values = []
for org_code, month_data in org_month_data.items():
for month, stats in month_data.items():
if stats["count"] > 0:
monthly_counts.append(stats["count"])
monthly_avg_values.append(stats["value"] / stats["count"])
if len(monthly_counts) >= 10 and len(monthly_avg_values) >= 10:
# Calculate correlation between count and average value
correlation_coef = np.corrcoef(monthly_counts, monthly_avg_values)[0, 1]
if abs(correlation_coef) > self.correlation_threshold:
significance_level = "high" if abs(correlation_coef) > 0.7 else "medium"
interpretation = (
"Correlação negativa indica que meses com mais contratos tendem a ter valores médios menores"
if correlation_coef < 0 else
"Correlação positiva indica que meses com mais contratos tendem a ter valores médios maiores"
)
correlation = CorrelationResult(
correlation_type="count_vs_value",
variables=["monthly_contract_count", "monthly_average_value"],
correlation_coefficient=correlation_coef,
p_value=None, # Would need scipy.stats for p-value
significance_level=significance_level,
description=f"Correlação entre quantidade e valor médio de contratos",
business_interpretation=interpretation,
evidence={
"correlation_coefficient": correlation_coef,
"sample_size": len(monthly_counts),
"count_range": [min(monthly_counts), max(monthly_counts)],
"value_range": [min(monthly_avg_values), max(monthly_avg_values)],
},
recommendations=[
"Investigar fatores que influenciam essa correlação",
"Analisar estratégias de contratação",
"Verificar planejamento orçamentário",
"Monitorar tendências futuras",
],
)
correlations.append(correlation)
return correlations
async def _calculate_efficiency_metrics(
self,
data: List[Dict[str, Any]],
context: AgentContext
) -> List[PatternResult]:
"""Calculate efficiency metrics for organizations."""
patterns = []
# Calculate metrics by organization
org_metrics = defaultdict(lambda: {
"total_value": 0,
"contract_count": 0,
"unique_vendors": set(),
"months_active": set(),
})
for contract in data:
org_code = contract.get("_org_code")
valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
supplier = contract.get("fornecedor", {}).get("nome")
month = contract.get("_month")
if org_code and isinstance(valor, (int, float)):
org_metrics[org_code]["total_value"] += float(valor)
org_metrics[org_code]["contract_count"] += 1
if supplier:
org_metrics[org_code]["unique_vendors"].add(supplier)
if month:
org_metrics[org_code]["months_active"].add(month)
# Calculate efficiency scores
efficiency_scores = {}
for org_code, metrics in org_metrics.items():
if metrics["contract_count"] > 0:
vendor_diversity = len(metrics["unique_vendors"]) / metrics["contract_count"]
avg_contract_value = metrics["total_value"] / metrics["contract_count"]
activity_consistency = len(metrics["months_active"]) / 12 # Normalize to year
# Composite efficiency score
efficiency_score = (vendor_diversity * 0.4 + activity_consistency * 0.6)
efficiency_scores[org_code] = {
"score": efficiency_score,
"vendor_diversity": vendor_diversity,
"avg_contract_value": avg_contract_value,
"activity_consistency": activity_consistency,
"metrics": metrics,
}
# Find organizations with notably high or low efficiency
if efficiency_scores:
scores = [eff["score"] for eff in efficiency_scores.values()]
mean_score = np.mean(scores)
std_score = np.std(scores)
for org_code, efficiency in efficiency_scores.items():
if std_score > 0:
z_score = (efficiency["score"] - mean_score) / std_score
if abs(z_score) > 1.0: # Significant deviation
performance_type = "high_efficiency" if z_score > 0 else "low_efficiency"
significance = min(abs(z_score) / 2.0, 1.0)
pattern = PatternResult(
pattern_type="efficiency_metrics",
description=f"Performance organizacional {performance_type}: {org_code}",
significance=significance,
confidence=min(abs(z_score) / 1.5, 1.0),
insights=[
f"Score de eficiência: {efficiency['score']:.2f}",
f"Diversidade de fornecedores: {efficiency['vendor_diversity']:.2f}",
f"Consistência de atividade: {efficiency['activity_consistency']:.2f}",
f"Valor médio por contrato: R$ {efficiency['avg_contract_value']:,.2f}",
],
evidence={
"organization": org_code,
"efficiency_score": efficiency["score"],
"vendor_diversity": efficiency["vendor_diversity"],
"activity_consistency": efficiency["activity_consistency"],
"z_score": z_score,
"benchmark_average": mean_score,
},
recommendations=[
"Analisar fatores que contribuem para a performance",
"Compartilhar boas práticas com outras organizações",
"Investigar oportunidades de melhoria" if z_score < 0 else "Manter padrão de excelência",
"Monitorar tendências de performance",
],
entities_involved=[{
"organization": org_code,
"efficiency_score": efficiency["score"],
"performance_type": performance_type,
}],
)
patterns.append(pattern)
return patterns
async def _analyze_spectral_patterns(
self,
data: List[Dict[str, Any]],
request: AnalysisRequest,
context: AgentContext
) -> List[PatternResult]:
"""
Analyze spectral patterns using Fourier transforms.
Args:
data: Contract data for analysis
request: Analysis request parameters
context: Agent context
Returns:
List of spectral pattern results
"""
patterns = []
try:
# Group data by organization for spectral analysis
org_groups = defaultdict(list)
for contract in data:
org_code = contract.get("_org_code", "unknown")
org_groups[org_code].append(contract)
for org_code, org_contracts in org_groups.items():
if len(org_contracts) < 30: # Need sufficient data
continue
# Prepare time series data
time_series_data = self._prepare_time_series_for_org(org_contracts)
if len(time_series_data) < 20:
continue
# Extract spending values and timestamps
spending_data = pd.Series([item['value'] for item in time_series_data])
timestamps = pd.DatetimeIndex([item['date'] for item in time_series_data])
# Perform spectral analysis
spectral_features = self.spectral_analyzer.analyze_time_series(
spending_data, timestamps
)
# Find periodic patterns
periodic_patterns = self.spectral_analyzer.find_periodic_patterns(
spending_data, timestamps, entity_name=f"Org_{org_code}"
)
# Convert to PatternResult objects
for i, period_pattern in enumerate(periodic_patterns[:5]): # Top 5 patterns
if period_pattern.amplitude > 0.1: # Only significant patterns
pattern = PatternResult(
pattern_type="spectral_periodic",
description=f"Padrão periódico detectado: {period_pattern.period_days:.1f} dias",
significance=period_pattern.amplitude,
confidence=period_pattern.confidence,
insights=[
f"Período dominante: {period_pattern.period_days:.1f} dias",
f"Força do padrão: {period_pattern.amplitude:.1%}",
f"Tipo: {period_pattern.pattern_type}",
period_pattern.business_interpretation
],
evidence={
"period_days": period_pattern.period_days,
"frequency_hz": period_pattern.frequency_hz,
"amplitude": period_pattern.amplitude,
"pattern_type": period_pattern.pattern_type,
"confidence": period_pattern.confidence,
"spectral_entropy": spectral_features.spectral_entropy,
"dominant_frequencies": spectral_features.dominant_frequencies,
"seasonal_components": spectral_features.seasonal_components
},
recommendations=[
f"Investigar causa do padrão de {period_pattern.period_days:.1f} dias",
"Verificar se corresponde a processos de negócio conhecidos",
"Analisar se há justificativa administrativa",
"Considerar otimização do cronograma de contratações"
],
entities_involved=[{
"organization_code": org_code,
"contracts_analyzed": len(org_contracts),
"period_days": period_pattern.period_days,
"pattern_strength": period_pattern.amplitude
}],
trend_direction=self._classify_trend_from_spectral(spectral_features),
correlation_strength=period_pattern.amplitude
)
patterns.append(pattern)
# Analyze overall spectral characteristics
if spectral_features.spectral_entropy < 0.3: # Low entropy indicates regular patterns
pattern = PatternResult(
pattern_type="spectral_regularity",
description=f"Padrão de gastos muito regular detectado (entropia: {spectral_features.spectral_entropy:.2f})",
significance=1 - spectral_features.spectral_entropy,
confidence=0.8,
insights=[
f"Entropia espectral baixa: {spectral_features.spectral_entropy:.2f}",
"Gastos seguem padrão muito regular",
"Pode indicar processos automatizados ou planejamento rígido",
f"Anomalia score: {spectral_features.anomaly_score:.2f}"
],
evidence={
"spectral_entropy": spectral_features.spectral_entropy,
"anomaly_score": spectral_features.anomaly_score,
"dominant_frequencies": spectral_features.dominant_frequencies[:5],
"seasonal_components": spectral_features.seasonal_components
},
recommendations=[
"Verificar se a regularidade é justificada",
"Investigar processos de planejamento orçamentário",
"Analisar flexibilidade nos cronogramas",
"Considerar diversificação temporal"
],
entities_involved=[{
"organization_code": org_code,
"spectral_entropy": spectral_features.spectral_entropy,
"regularity_score": 1 - spectral_features.spectral_entropy
}]
)
patterns.append(pattern)
self.logger.info(
"spectral_analysis_completed",
patterns_found=len(patterns),
organizations_analyzed=len(org_groups)
)
except Exception as e:
self.logger.error(f"Error in spectral pattern analysis: {str(e)}")
return patterns
async def _perform_cross_spectral_analysis(
self,
data: List[Dict[str, Any]],
request: AnalysisRequest,
context: AgentContext
) -> List[CorrelationResult]:
"""
Perform cross-spectral analysis between organizations.
Args:
data: Contract data for analysis
request: Analysis request parameters
context: Agent context
Returns:
List of cross-spectral correlation results
"""
correlations = []
try:
# Group data by organization
org_groups = defaultdict(list)
for contract in data:
org_code = contract.get("_org_code", "unknown")
org_groups[org_code].append(contract)
# Get organizations with sufficient data
valid_orgs = {org: contracts for org, contracts in org_groups.items()
if len(contracts) >= 30}
if len(valid_orgs) < 2:
return correlations
org_list = list(valid_orgs.keys())
# Perform pairwise cross-spectral analysis
for i, org1 in enumerate(org_list):
for org2 in org_list[i+1:]:
try:
# Prepare time series for both organizations
ts1 = self._prepare_time_series_for_org(valid_orgs[org1])
ts2 = self._prepare_time_series_for_org(valid_orgs[org2])
if len(ts1) < 20 or len(ts2) < 20:
continue
# Create comparable time series (same date range)
all_dates = sorted(set([item['date'] for item in ts1 + ts2]))
if len(all_dates) < 20:
continue
# Create aligned series
data1 = pd.Series(index=all_dates, dtype=float).fillna(0)
data2 = pd.Series(index=all_dates, dtype=float).fillna(0)
for item in ts1:
data1[item['date']] += item['value']
for item in ts2:
data2[item['date']] += item['value']
timestamps = pd.DatetimeIndex(all_dates)
# Perform cross-spectral analysis
cross_spectral_result = self.spectral_analyzer.cross_spectral_analysis(
data1, data2, f"Org_{org1}", f"Org_{org2}", timestamps
)
if cross_spectral_result and cross_spectral_result.get('max_coherence', 0) > 0.5:
correlation = CorrelationResult(
correlation_type="cross_spectral",
variables=[f"Org_{org1}", f"Org_{org2}"],
correlation_coefficient=cross_spectral_result['correlation_coefficient'],
p_value=None, # Not computed in spectral analysis
significance_level=self._assess_spectral_significance(
cross_spectral_result['max_coherence']
),
description=f"Correlação espectral entre organizações {org1} e {org2}",
business_interpretation=cross_spectral_result['business_interpretation'],
evidence={
"max_coherence": cross_spectral_result['max_coherence'],
"mean_coherence": cross_spectral_result['mean_coherence'],
"correlated_periods_days": cross_spectral_result['correlated_periods_days'],
"synchronization_score": cross_spectral_result['synchronization_score'],
"correlated_frequencies": cross_spectral_result['correlated_frequencies']
},
recommendations=[
"Investigar possível coordenação entre organizações",
"Verificar se há fornecedores em comum",
"Analisar sincronização de processos",
"Revisar independência das contratações"
]
)
correlations.append(correlation)
except Exception as e:
self.logger.warning(f"Cross-spectral analysis failed for {org1}-{org2}: {str(e)}")
continue
self.logger.info(
"cross_spectral_analysis_completed",
correlations_found=len(correlations),
organizations_compared=len(org_list)
)
except Exception as e:
self.logger.error(f"Error in cross-spectral analysis: {str(e)}")
return correlations
def _prepare_time_series_for_org(self, contracts: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Prepare time series data for a specific organization."""
time_series = []
for contract in contracts:
# Extract date
date_str = (
contract.get("dataAssinatura") or
contract.get("dataPublicacao") or
contract.get("dataInicio")
)
if not date_str:
continue
try:
# Parse date (DD/MM/YYYY format)
date_parts = date_str.split("/")
if len(date_parts) == 3:
day, month, year = int(date_parts[0]), int(date_parts[1]), int(date_parts[2])
date_obj = datetime(year, month, day)
# Extract value
valor = contract.get("valorInicial") or contract.get("valorGlobal") or 0
if isinstance(valor, (int, float)) and valor > 0:
time_series.append({
'date': date_obj,
'value': float(valor),
'contract_id': contract.get('id')
})
except (ValueError, IndexError):
continue
# Sort by date and aggregate by date
time_series.sort(key=lambda x: x['date'])
# Aggregate by date
daily_aggregates = defaultdict(float)
for item in time_series:
daily_aggregates[item['date']] += item['value']
return [{'date': date, 'value': value} for date, value in daily_aggregates.items()]
def _classify_trend_from_spectral(self, features: SpectralFeatures) -> Optional[str]:
"""Classify trend direction from spectral features."""
# Analyze trend component
if hasattr(features, 'trend_component') and len(features.trend_component) > 10:
trend_start = np.mean(features.trend_component[:len(features.trend_component)//3])
trend_end = np.mean(features.trend_component[-len(features.trend_component)//3:])
if trend_end > trend_start * 1.1:
return "increasing"
elif trend_end < trend_start * 0.9:
return "decreasing"
else:
return "stable"
return None
def _assess_spectral_significance(self, coherence: float) -> str:
"""Assess significance level of spectral coherence."""
if coherence > 0.8:
return "high"
elif coherence > 0.6:
return "medium"
else:
return "low"
def _generate_insights(
self,
patterns: List[PatternResult],
correlations: List[CorrelationResult],
data: List[Dict[str, Any]]
) -> List[str]:
"""Generate high-level insights from analysis results."""
insights = []
# High-level data insights
total_contracts = len(data)
total_value = sum(
float(c.get("valorInicial") or c.get("valorGlobal") or 0)
for c in data
if isinstance(c.get("valorInicial") or c.get("valorGlobal"), (int, float))
)
insights.append(f"Analisados {total_contracts} contratos totalizando R$ {total_value:,.2f}")
# Pattern insights
if patterns:
high_significance = [p for p in patterns if p.significance > 0.7]
insights.append(f"Identificados {len(patterns)} padrões, sendo {len(high_significance)} de alta significância")
# Most significant pattern
if high_significance:
top_pattern = max(high_significance, key=lambda p: p.significance)
insights.append(f"Padrão mais significativo: {top_pattern.description}")
# Correlation insights
if correlations:
strong_correlations = [c for c in correlations if abs(c.correlation_coefficient) > 0.7]
insights.append(f"Encontradas {len(correlations)} correlações, sendo {len(strong_correlations)} fortes")
# Risk assessment
risk_patterns = [p for p in patterns if p.pattern_type in ["spending_trends", "vendor_behavior"]]
if risk_patterns:
insights.append(f"Identificados {len(risk_patterns)} padrões que requerem atenção especial")
return insights
def _generate_analysis_summary(
self,
data: List[Dict[str, Any]],
patterns: List[PatternResult],
correlations: List[CorrelationResult]
) -> Dict[str, Any]:
"""Generate summary statistics for the analysis."""
# Calculate basic statistics
total_value = sum(
float(c.get("valorInicial") or c.get("valorGlobal") or 0)
for c in data
if isinstance(c.get("valorInicial") or c.get("valorGlobal"), (int, float))
)
organizations = len(set(c.get("_org_code") for c in data if c.get("_org_code")))
months_covered = len(set(c.get("_month") for c in data if c.get("_month")))
# Pattern statistics
pattern_types = Counter(p.pattern_type for p in patterns)
high_significance_patterns = len([p for p in patterns if p.significance > 0.7])
# Calculate overall analysis score
analysis_score = min(
(len(patterns) + len(correlations)) / max(len(data) / 10, 1) * 5,
10
)
return {
"total_records": len(data),
"total_value": total_value,
"organizations_analyzed": organizations,
"months_covered": months_covered,
"patterns_found": len(patterns),
"correlations_found": len(correlations),
"pattern_types": dict(pattern_types),
"high_significance_patterns": high_significance_patterns,
"analysis_score": analysis_score,
"avg_contract_value": total_value / len(data) if data else 0,
}
def _pattern_to_dict(self, pattern: PatternResult) -> Dict[str, Any]:
"""Convert PatternResult to dictionary for serialization."""
return {
"type": pattern.pattern_type,
"description": pattern.description,
"significance": pattern.significance,
"confidence": pattern.confidence,
"insights": pattern.insights,
"evidence": pattern.evidence,
"recommendations": pattern.recommendations,
"entities_involved": pattern.entities_involved,
"trend_direction": pattern.trend_direction,
"correlation_strength": pattern.correlation_strength,
}
def _correlation_to_dict(self, correlation: CorrelationResult) -> Dict[str, Any]:
"""Convert CorrelationResult to dictionary for serialization."""
return {
"type": correlation.correlation_type,
"variables": correlation.variables,
"correlation_coefficient": correlation.correlation_coefficient,
"p_value": correlation.p_value,
"significance_level": correlation.significance_level,
"description": correlation.description,
"business_interpretation": correlation.business_interpretation,
"evidence": correlation.evidence,
"recommendations": correlation.recommendations,
}