File size: 19,324 Bytes
b8bc019
e22a543
1c45e58
63add86
1c45e58
 
4ce4fa4
e22a543
4ce4fa4
e22a543
4ce4fa4
 
63add86
 
1c45e58
4ce4fa4
e22a543
4ce4fa4
e22a543
1c45e58
 
 
b20d7cc
e22a543
 
 
 
 
112c4ca
 
1c45e58
 
 
 
 
 
e22a543
63add86
1c45e58
 
 
e22a543
63add86
1c45e58
 
 
e22a543
63add86
1c45e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112c4ca
 
1c45e58
112c4ca
e22a543
1c45e58
112c4ca
 
1c45e58
 
e22a543
1c45e58
e22a543
1c45e58
e22a543
 
 
1c45e58
e22a543
 
 
 
112c4ca
e22a543
1c45e58
112c4ca
e22a543
 
1c45e58
 
 
e22a543
1c45e58
 
e22a543
1c45e58
e22a543
 
 
 
1c45e58
e22a543
 
1c45e58
e22a543
1c45e58
63add86
1c45e58
 
 
e22a543
 
1c45e58
 
 
 
 
 
 
 
 
 
 
 
112c4ca
1c45e58
 
112c4ca
1c45e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112c4ca
1c45e58
112c4ca
 
 
 
 
e22a543
 
 
1c45e58
e22a543
1c45e58
e22a543
112c4ca
1c45e58
 
e22a543
 
1c45e58
e22a543
112c4ca
e22a543
1c45e58
e22a543
112c4ca
 
 
e22a543
112c4ca
e22a543
 
 
 
 
112c4ca
1c45e58
 
112c4ca
 
1c45e58
112c4ca
 
1c45e58
 
 
e22a543
1c45e58
 
 
 
 
 
e22a543
1c45e58
 
 
e22a543
1c45e58
 
 
 
e22a543
1c45e58
 
 
e22a543
1c45e58
e22a543
 
1c45e58
 
4ce4fa4
 
1c45e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112c4ca
1c45e58
112c4ca
 
1c45e58
 
 
 
 
 
 
 
 
112c4ca
1c45e58
 
 
 
112c4ca
 
1c45e58
 
 
 
 
e22a543
1c45e58
 
63add86
1c45e58
 
 
 
 
e22a543
1c45e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e22a543
1c45e58
e22a543
1c45e58
 
 
 
 
 
 
 
 
 
 
 
112c4ca
1c45e58
 
d77255d
1c45e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ce4fa4
1c45e58
 
 
8946e88
1c45e58
 
4ce4fa4
1c45e58
 
 
 
8946e88
1c45e58
 
 
 
 
 
 
 
 
 
 
 
4ce4fa4
 
1c45e58
 
 
 
e22a543
 
1c45e58
 
 
e22a543
 
 
 
112c4ca
e22a543
 
112c4ca
1c45e58
 
 
 
e22a543
1c45e58
 
 
 
d77255d
1c45e58
 
 
 
 
 
 
 
 
 
 
a264b9a
6d91b68
e22a543
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import os
import re
import hashlib
from dataclasses import dataclass
from collections import OrderedDict
from typing import List, Tuple, Optional, Dict, Any

import numpy as np
import torch
import gradio as gr

from transformers import (
    AutoTokenizer,
    AutoModel,
    pipeline,
)
from transformers.utils import logging as hf_logging


# =========================
# CPU-only + quieter logs
# =========================
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
os.environ.setdefault("TRANSFORMERS_NO_ADVISORY_WARNINGS", "1")
hf_logging.set_verbosity_error()

torch.set_grad_enabled(False)
torch.set_num_threads(int(os.getenv("TORCH_NUM_THREADS", "4")))

# =========================
# Models (3 transformers)
# =========================
SUM_MODEL_CANDIDATES = [
    "d0rj/rut5-base-summ",           # RU summarization
    "cointegrated/rut5-base-absum",  # RU summarization fallback
]

QA_MODEL_CANDIDATES = [
    "mrm8488/bert-multi-cased-finetuned-xquadv1",  # multilingual QA
    "mrm8488/bert-multi-cased-finedtuned-xquad-tydiqa-goldp",
]

EMB_MODEL_CANDIDATES = [
    "intfloat/multilingual-e5-small",  # retrieval embeddings
    "intfloat/e5-small-v2",
]

DEVICE = -1  # CPU for pipelines

# =========================
# Limits (memory & speed)
# =========================
MAX_TEXT_CHARS = 120_000
CHUNK_CHARS = 1400
MAX_CHUNKS = 140
EMB_BATCH = 16

TOPK_DEFAULT = 5
CTX_MAX_CHARS = 4500

# =========================
# Helpers
# =========================
RU_STOP = {
    "и","в","во","на","но","а","что","это","как","к","ко","из","за","по","у","от","до","при","для","над",
    "под","же","ли","бы","не","ни","то","его","ее","их","мы","вы","они","она","он","оно","этот","эта","эти",
    "там","тут","здесь","так","такие","такой","есть","быть","был","была","были","будет","будут"
}

def safe_text(s: str, max_chars: int = MAX_TEXT_CHARS) -> str:
    s = (s or "").strip()
    if len(s) > max_chars:
        s = s[:max_chars].rstrip() + "\n\n[Обрезано по лимиту длины]"
    return s

def normalize_space(s: str) -> str:
    return re.sub(r"\s+", " ", (s or "")).strip()

def split_into_chunks(text: str) -> List[str]:
    text = safe_text(text)
    paras = [p.strip() for p in re.split(r"\n\s*\n+", text) if p.strip()]
    chunks = []
    buf = ""

    for p in paras:
        if not buf:
            buf = p
        elif len(buf) + 2 + len(p) <= CHUNK_CHARS:
            buf = buf + "\n\n" + p
        else:
            chunks.append(buf.strip())
            buf = p
        if len(chunks) >= MAX_CHUNKS:
            break

    if buf and len(chunks) < MAX_CHUNKS:
        chunks.append(buf.strip())

    # If still too big, split long chunks by sentences
    sent_re = re.compile(r"(?<=[\.\!\?…])\s+")
    final_chunks = []
    for c in chunks:
        if len(c) <= int(CHUNK_CHARS * 1.6):
            final_chunks.append(c)
            continue
        sents = [x.strip() for x in sent_re.split(c) if x.strip()]
        b = ""
        for s in sents:
            if not b:
                b = s
            elif len(b) + 1 + len(s) <= CHUNK_CHARS:
                b = b + " " + s
            else:
                final_chunks.append(b.strip())
                b = s
            if len(final_chunks) >= MAX_CHUNKS:
                break
        if b and len(final_chunks) < MAX_CHUNKS:
            final_chunks.append(b.strip())
        if len(final_chunks) >= MAX_CHUNKS:
            break

    return final_chunks[:MAX_CHUNKS]

def sha_key(text: str) -> str:
    h = hashlib.sha1(text.encode("utf-8")).hexdigest()
    return h[:12]


# =========================
# Global model holders
# =========================
_SUM_PIPE = None
_SUM_ID = None

_QA_PIPE = None
_QA_ID = None

_EMB_TOK = None
_EMB_MODEL = None
_EMB_ID = None


def _try_load_summarizer() -> Tuple[Any, str]:
    last_err = None
    for mid in SUM_MODEL_CANDIDATES:
        try:
            pipe = pipeline("summarization", model=mid, device=DEVICE)
            return pipe, mid
        except Exception as e:
            last_err = e
    raise RuntimeError(f"Cannot load summarization model. Last error: {last_err}")

def _try_load_qa() -> Tuple[Any, str]:
    last_err = None
    for mid in QA_MODEL_CANDIDATES:
        try:
            pipe = pipeline("question-answering", model=mid, device=DEVICE)
            return pipe, mid
        except Exception as e:
            last_err = e
    raise RuntimeError(f"Cannot load QA model. Last error: {last_err}")

def _try_load_emb() -> Tuple[Any, Any, str]:
    last_err = None
    for mid in EMB_MODEL_CANDIDATES:
        try:
            tok = AutoTokenizer.from_pretrained(mid, use_fast=True)
            model = AutoModel.from_pretrained(mid, torch_dtype=torch.float32, low_cpu_mem_usage=True).eval()
            return tok, model, mid
        except Exception as e:
            last_err = e
    raise RuntimeError(f"Cannot load embedding model. Last error: {last_err}")

def get_models():
    global _SUM_PIPE, _SUM_ID, _QA_PIPE, _QA_ID, _EMB_TOK, _EMB_MODEL, _EMB_ID

    if _SUM_PIPE is None:
        _SUM_PIPE, _SUM_ID = _try_load_summarizer()
    if _QA_PIPE is None:
        _QA_PIPE, _QA_ID = _try_load_qa()
    if _EMB_MODEL is None:
        _EMB_TOK, _EMB_MODEL, _EMB_ID = _try_load_emb()

    return _SUM_PIPE, _SUM_ID, _QA_PIPE, _QA_ID, _EMB_TOK, _EMB_MODEL, _EMB_ID


# =========================
# Embeddings + retrieval
# =========================
@torch.inference_mode()
def _mean_pool(last_hidden: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
    m = mask.unsqueeze(-1).bool()
    x = last_hidden.masked_fill(~m, 0.0)
    summed = x.sum(dim=1)
    denom = mask.sum(dim=1).clamp(min=1).unsqueeze(-1)
    return summed / denom

@torch.inference_mode()
def embed_texts(texts: List[str], is_query: bool) -> np.ndarray:
    _, _, _, _, tok, model, _ = get_models()
    prefix = "query: " if is_query else "passage: "
    batch_texts = [prefix + normalize_space(t) for t in texts]

    vecs = []
    for i in range(0, len(batch_texts), EMB_BATCH):
        batch = batch_texts[i:i + EMB_BATCH]
        enc = tok(batch, padding=True, truncation=True, max_length=512, return_tensors="pt")
        out = model(**enc)
        pooled = _mean_pool(out.last_hidden_state, enc["attention_mask"])
        pooled = torch.nn.functional.normalize(pooled, p=2, dim=1)
        vecs.append(pooled.cpu().numpy().astype(np.float32))

    return np.vstack(vecs) if vecs else np.zeros((0, 384), dtype=np.float32)

def topk_cosine(q: np.ndarray, mat: np.ndarray, k: int) -> List[Tuple[int, float]]:
    scores = (mat @ q.reshape(-1, 1)).squeeze(1)
    if scores.size == 0:
        return []
    k = max(1, min(k, scores.size))
    idx = np.argpartition(-scores, k - 1)[:k]
    idx = idx[np.argsort(-scores[idx])]
    return [(int(i), float(scores[i])) for i in idx]


@dataclass
class Index:
    key: str
    text: str
    chunks: List[str]
    emb: np.ndarray


# Small LRU cache (keeps RAM bounded)
_INDEX_CACHE: "OrderedDict[str, Index]" = OrderedDict()
CACHE_MAX = 4

def get_index(text: str) -> Index:
    text = safe_text(text)
    k = sha_key(text)
    if k in _INDEX_CACHE:
        _INDEX_CACHE.move_to_end(k)
        return _INDEX_CACHE[k]

    chunks = split_into_chunks(text)
    emb = embed_texts(chunks, is_query=False) if chunks else np.zeros((0, 384), dtype=np.float32)
    idx = Index(key=k, text=text, chunks=chunks, emb=emb)

    _INDEX_CACHE[k] = idx
    _INDEX_CACHE.move_to_end(k)
    while len(_INDEX_CACHE) > CACHE_MAX:
        _INDEX_CACHE.popitem(last=False)

    return idx

def retrieve(idx: Index, query: str, k: int) -> List[Tuple[float, str]]:
    query = (query or "").strip()
    if not query or idx.emb.shape[0] == 0:
        return []
    qv = embed_texts([query], is_query=True)[0]
    hits = topk_cosine(qv, idx.emb, k=k)
    return [(score, idx.chunks[i]) for i, score in hits]


# =========================
# Summarization (hierarchical, stable)
# =========================
def summarize_one(text: str, out_max: int, out_min: int) -> str:
    sum_pipe, _, _, _, _, _, _ = get_models()
    text = normalize_space(text)
    if not text:
        return ""
    # pipeline expects token lengths; we keep conservative values
    res = sum_pipe(text, max_length=out_max, min_length=out_min, do_sample=False)
    if isinstance(res, list) and res:
        return (res[0].get("summary_text") or "").strip()
    return ""

def smart_summary(text: str) -> str:
    text = safe_text(text)
    if not text:
        return "Нет текста."

    chunks = split_into_chunks(text)
    if not chunks:
        return "Нет текста."

    # For short text: direct
    if len(text) < 2500 and len(chunks) <= 2:
        s = summarize_one(text, out_max=220, out_min=80)
        return s if s else summarize_one(text, out_max=160, out_min=50)

    # For long text: summarize chunks then summarize the combined summaries
    parts = chunks[:8]
    partial = []
    for p in parts:
        sp = summarize_one(p, out_max=140, out_min=40)
        if sp:
            partial.append(sp)

    combined = " ".join(partial).strip()
    if not combined:
        combined = " ".join(parts)[:4000]

    final = summarize_one(combined, out_max=240, out_min=90)
    if not final:
        final = summarize_one(combined, out_max=180, out_min=60)

    return final if final else "Не удалось получить пересказ."

def make_title(text: str, summary: str) -> str:
    # heuristic title: first 8–12 words of summary, else first sentence of text
    src = summary.strip() if summary.strip() else normalize_space(text[:500])
    words = [w for w in re.split(r"\s+", src) if w]
    title = " ".join(words[:12]).strip(" .,:;—-")
    return title if title else "Краткий пересказ"


# =========================
# QA Chat (retrieval + pipeline QA)
# =========================
def qa_answer(question: str, context: str) -> Tuple[str, str, float]:
    _, _, qa_pipe, _, _, _, _ = get_models()
    question = (question or "").strip()
    context = (context or "").strip()
    if not question or not context:
        return "", "", 0.0

    context = context[:CTX_MAX_CHARS]
    out = qa_pipe(question=question, context=context)
    ans = (out.get("answer") or "").strip()
    score = float(out.get("score") or 0.0)
    start = int(out.get("start") or 0)
    end = int(out.get("end") or 0)

    # evidence snippet
    left = max(0, start - 140)
    right = min(len(context), end + 220)
    snippet = context[left:right].strip()
    if left > 0:
        snippet = "…" + snippet
    if right < len(context):
        snippet = snippet + "…"

    return ans, snippet, score


# =========================
# Quiz (heuristic questions; answers via retrieval+QA)
# =========================
def _sentences(text: str) -> List[str]:
    # very simple sentence splitter
    text = normalize_space(text)
    if not text:
        return []
    parts = re.split(r"(?<=[\.\!\?…])\s+", text)
    out = []
    for p in parts:
        p = p.strip()
        if 40 <= len(p) <= 240:
            out.append(p)
    return out

def _keywords(text: str) -> Dict[str, int]:
    words = re.findall(r"[А-Яа-яЁёA-Za-z\-]{3,}", text.lower())
    freq: Dict[str, int] = {}
    for w in words:
        if w in RU_STOP:
            continue
        freq[w] = freq.get(w, 0) + 1
    return freq

def generate_quiz_questions(text: str, n: int) -> List[str]:
    n = int(max(1, min(n, 12)))
    sents = _sentences(text)
    if not sents:
        return []

    freq = _keywords(text)
    if not freq:
        # fallback: use first sentences
        sents = sents[:n]
        return [f"О чем говорится в утверждении: «{s}»?" for s in sents]

    scored = []
    for s in sents:
        ws = re.findall(r"[А-Яа-яЁёA-Za-z\-]{3,}", s.lower())
        score = sum(freq.get(w, 0) for w in ws if w not in RU_STOP)
        scored.append((score, s))
    scored.sort(key=lambda x: x[0], reverse=True)

    questions = []
    for _, s in scored[: min(len(scored), n * 2)]:
        ws = [w for w in re.findall(r"[А-Яа-яЁёA-Za-z\-]{3,}", s.lower()) if w not in RU_STOP]
        if not ws:
            continue
        # choose "keyword" to blank
        kw = max(ws, key=lambda w: freq.get(w, 0))
        # blank first occurrence (case-insensitive)
        blanked = re.sub(re.escape(kw), "____", s, count=1, flags=re.IGNORECASE)
        q = f"Заполните пропуск: {blanked}"
        questions.append(q)
        if len(questions) >= n:
            break

    return questions[:n]


# =========================
# Gradio actions
# =========================
def on_load_models() -> str:
    try:
        sum_pipe, sum_id, qa_pipe, qa_id, emb_tok, emb_model, emb_id = get_models()
        return (
            "Модели загружены.\n"
            f"- Summarization: {sum_id}\n"
            f"- QA: {qa_id}\n"
            f"- Embeddings: {emb_id}\n"
        )
    except Exception as e:
        return f"Ошибка загрузки моделей: {e}"

def on_summary(text: str) -> str:
    try:
        text = safe_text(text)
        if not text:
            return "Нет текста."
        s = smart_summary(text)
        title = make_title(text, s)
        return f"### Заголовок\n{title}\n\n### Пересказ\n{s}"
    except Exception as e:
        return f"Ошибка: {e}"

def on_search(text: str, query: str, k: int) -> str:
    try:
        text = safe_text(text)
        query = (query or "").strip()
        if not text:
            return "Нет текста."
        if not query:
            return "Введите запрос."
        idx = get_index(text)
        hits = retrieve(idx, query, int(max(1, min(k, 10))))
        if not hits:
            return "Ничего не найдено."
        out = ["### Результаты"]
        for i, (score, chunk) in enumerate(hits, 1):
            out.append(f"**{i}. score={score:.3f}**\n{chunk}\n")
        return "\n".join(out).strip()
    except Exception as e:
        return f"Ошибка: {e}"

def on_quiz(text: str, n: int) -> str:
    try:
        text = safe_text(text)
        if not text:
            return "Нет текста."
        idx = get_index(text)

        questions = generate_quiz_questions(text, int(n))
        if not questions:
            return "Не удалось сгенерировать вопросы."

        lines = ["### Вопросы и ответы (с доказательством)"]
        for i, q in enumerate(questions, 1):
            # For cloze question, try to answer via QA using retrieved context.
            # We convert cloze to a QA-style question by removing "Заполните пропуск:"
            qa_q = re.sub(r"^Заполните пропуск:\s*", "", q).strip()
            hits = retrieve(idx, qa_q, k=5)
            ctx = "\n\n".join([c for _, c in hits]) if hits else text[:CTX_MAX_CHARS]
            ctx = ctx[:CTX_MAX_CHARS]

            ans, ev, score = qa_answer(qa_q, ctx)
            if not ans or score < 0.08:
                ans = "В тексте это не указано (или требуется переформулировать вопрос)."

            lines.append(f"**{i}. {q}**")
            lines.append(f"- Ответ: {ans}")
            lines.append(f"- Фрагмент: {ev}")
            lines.append("")
        return "\n".join(lines).strip()
    except Exception as e:
        return f"Ошибка: {e}"

def on_chat(text: str, history: List[Tuple[str, str]], user_q: str):
    try:
        text = safe_text(text)
        user_q = (user_q or "").strip()
        history = history or []

        if not text:
            history.append((user_q, "Нет текста. Вставьте текст слева."))
            return history, ""

        if not user_q:
            return history, ""

        idx = get_index(text)
        hits = retrieve(idx, user_q, k=5)
        ctx = "\n\n".join([c for _, c in hits]) if hits else text[:CTX_MAX_CHARS]
        ctx = ctx[:CTX_MAX_CHARS]

        ans, ev, score = qa_answer(user_q, ctx)
        if not ans or score < 0.08:
            reply = "Ответ по тексту не найден. Попробуйте переформулировать вопрос или уточнить термин."
        else:
            reply = f"Ответ: {ans}\n\nДоказательство:\n{ev}"

        history.append((user_q, reply))
        return history, ""
    except Exception as e:
        history = history or []
        history.append((user_q, f"Ошибка: {e}"))
        return history, ""


# =========================
# UI (minimal)
# =========================
with gr.Blocks(title="RU Text Assistant (CPU, 3 Transformers)") as demo:
    with gr.Row():
        with gr.Column(scale=2):
            text_in = gr.Textbox(label="Текст (русский)", lines=16, placeholder="Вставьте текст для анализа…")
            load_btn = gr.Button("Загрузить модели", variant="secondary")
            model_status = gr.Textbox(label="Статус", lines=5, interactive=False)

        with gr.Column(scale=3):
            with gr.Tabs():
                with gr.Tab("Пересказ"):
                    sum_btn = gr.Button("Сделать пересказ", variant="primary")
                    sum_out = gr.Markdown()

                with gr.Tab("Поиск"):
                    query_in = gr.Textbox(label="Запрос", placeholder="Например: стандартизация, вариабельность, вывод…")
                    k_in = gr.Slider(1, 10, value=TOPK_DEFAULT, step=1, label="Top-K")
                    search_btn = gr.Button("Найти фрагменты", variant="primary")
                    search_out = gr.Markdown()

                with gr.Tab("Вопросы"):
                    n_in = gr.Slider(1, 12, value=6, step=1, label="Количество вопросов")
                    quiz_btn = gr.Button("Сгенерировать и проверить", variant="primary")
                    quiz_out = gr.Markdown()

                with gr.Tab("Чат по тексту"):
                    chat = gr.Chatbot(height=420)
                    user_q = gr.Textbox(label="Вопрос", lines=1, placeholder="Задайте вопрос по тексту…")
                    send_btn = gr.Button("Отправить", variant="primary")

    load_btn.click(on_load_models, outputs=[model_status])
    sum_btn.click(on_summary, inputs=[text_in], outputs=[sum_out])
    search_btn.click(on_search, inputs=[text_in, query_in, k_in], outputs=[search_out])
    quiz_btn.click(on_quiz, inputs=[text_in, n_in], outputs=[quiz_out])
    send_btn.click(on_chat, inputs=[text_in, chat, user_q], outputs=[chat, user_q])
    user_q.submit(on_chat, inputs=[text_in, chat, user_q], outputs=[chat, user_q])

if __name__ == "__main__":
    demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860, show_error=True)