422_tasks / app.py
UnMelow's picture
Update app.py
1c45e58 verified
import os
import re
import hashlib
from dataclasses import dataclass
from collections import OrderedDict
from typing import List, Tuple, Optional, Dict, Any
import numpy as np
import torch
import gradio as gr
from transformers import (
AutoTokenizer,
AutoModel,
pipeline,
)
from transformers.utils import logging as hf_logging
# =========================
# CPU-only + quieter logs
# =========================
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
os.environ.setdefault("TRANSFORMERS_NO_ADVISORY_WARNINGS", "1")
hf_logging.set_verbosity_error()
torch.set_grad_enabled(False)
torch.set_num_threads(int(os.getenv("TORCH_NUM_THREADS", "4")))
# =========================
# Models (3 transformers)
# =========================
SUM_MODEL_CANDIDATES = [
"d0rj/rut5-base-summ", # RU summarization
"cointegrated/rut5-base-absum", # RU summarization fallback
]
QA_MODEL_CANDIDATES = [
"mrm8488/bert-multi-cased-finetuned-xquadv1", # multilingual QA
"mrm8488/bert-multi-cased-finedtuned-xquad-tydiqa-goldp",
]
EMB_MODEL_CANDIDATES = [
"intfloat/multilingual-e5-small", # retrieval embeddings
"intfloat/e5-small-v2",
]
DEVICE = -1 # CPU for pipelines
# =========================
# Limits (memory & speed)
# =========================
MAX_TEXT_CHARS = 120_000
CHUNK_CHARS = 1400
MAX_CHUNKS = 140
EMB_BATCH = 16
TOPK_DEFAULT = 5
CTX_MAX_CHARS = 4500
# =========================
# Helpers
# =========================
RU_STOP = {
"и","в","во","на","но","а","что","это","как","к","ко","из","за","по","у","от","до","при","для","над",
"под","же","ли","бы","не","ни","то","его","ее","их","мы","вы","они","она","он","оно","этот","эта","эти",
"там","тут","здесь","так","такие","такой","есть","быть","был","была","были","будет","будут"
}
def safe_text(s: str, max_chars: int = MAX_TEXT_CHARS) -> str:
s = (s or "").strip()
if len(s) > max_chars:
s = s[:max_chars].rstrip() + "\n\n[Обрезано по лимиту длины]"
return s
def normalize_space(s: str) -> str:
return re.sub(r"\s+", " ", (s or "")).strip()
def split_into_chunks(text: str) -> List[str]:
text = safe_text(text)
paras = [p.strip() for p in re.split(r"\n\s*\n+", text) if p.strip()]
chunks = []
buf = ""
for p in paras:
if not buf:
buf = p
elif len(buf) + 2 + len(p) <= CHUNK_CHARS:
buf = buf + "\n\n" + p
else:
chunks.append(buf.strip())
buf = p
if len(chunks) >= MAX_CHUNKS:
break
if buf and len(chunks) < MAX_CHUNKS:
chunks.append(buf.strip())
# If still too big, split long chunks by sentences
sent_re = re.compile(r"(?<=[\.\!\?…])\s+")
final_chunks = []
for c in chunks:
if len(c) <= int(CHUNK_CHARS * 1.6):
final_chunks.append(c)
continue
sents = [x.strip() for x in sent_re.split(c) if x.strip()]
b = ""
for s in sents:
if not b:
b = s
elif len(b) + 1 + len(s) <= CHUNK_CHARS:
b = b + " " + s
else:
final_chunks.append(b.strip())
b = s
if len(final_chunks) >= MAX_CHUNKS:
break
if b and len(final_chunks) < MAX_CHUNKS:
final_chunks.append(b.strip())
if len(final_chunks) >= MAX_CHUNKS:
break
return final_chunks[:MAX_CHUNKS]
def sha_key(text: str) -> str:
h = hashlib.sha1(text.encode("utf-8")).hexdigest()
return h[:12]
# =========================
# Global model holders
# =========================
_SUM_PIPE = None
_SUM_ID = None
_QA_PIPE = None
_QA_ID = None
_EMB_TOK = None
_EMB_MODEL = None
_EMB_ID = None
def _try_load_summarizer() -> Tuple[Any, str]:
last_err = None
for mid in SUM_MODEL_CANDIDATES:
try:
pipe = pipeline("summarization", model=mid, device=DEVICE)
return pipe, mid
except Exception as e:
last_err = e
raise RuntimeError(f"Cannot load summarization model. Last error: {last_err}")
def _try_load_qa() -> Tuple[Any, str]:
last_err = None
for mid in QA_MODEL_CANDIDATES:
try:
pipe = pipeline("question-answering", model=mid, device=DEVICE)
return pipe, mid
except Exception as e:
last_err = e
raise RuntimeError(f"Cannot load QA model. Last error: {last_err}")
def _try_load_emb() -> Tuple[Any, Any, str]:
last_err = None
for mid in EMB_MODEL_CANDIDATES:
try:
tok = AutoTokenizer.from_pretrained(mid, use_fast=True)
model = AutoModel.from_pretrained(mid, torch_dtype=torch.float32, low_cpu_mem_usage=True).eval()
return tok, model, mid
except Exception as e:
last_err = e
raise RuntimeError(f"Cannot load embedding model. Last error: {last_err}")
def get_models():
global _SUM_PIPE, _SUM_ID, _QA_PIPE, _QA_ID, _EMB_TOK, _EMB_MODEL, _EMB_ID
if _SUM_PIPE is None:
_SUM_PIPE, _SUM_ID = _try_load_summarizer()
if _QA_PIPE is None:
_QA_PIPE, _QA_ID = _try_load_qa()
if _EMB_MODEL is None:
_EMB_TOK, _EMB_MODEL, _EMB_ID = _try_load_emb()
return _SUM_PIPE, _SUM_ID, _QA_PIPE, _QA_ID, _EMB_TOK, _EMB_MODEL, _EMB_ID
# =========================
# Embeddings + retrieval
# =========================
@torch.inference_mode()
def _mean_pool(last_hidden: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
m = mask.unsqueeze(-1).bool()
x = last_hidden.masked_fill(~m, 0.0)
summed = x.sum(dim=1)
denom = mask.sum(dim=1).clamp(min=1).unsqueeze(-1)
return summed / denom
@torch.inference_mode()
def embed_texts(texts: List[str], is_query: bool) -> np.ndarray:
_, _, _, _, tok, model, _ = get_models()
prefix = "query: " if is_query else "passage: "
batch_texts = [prefix + normalize_space(t) for t in texts]
vecs = []
for i in range(0, len(batch_texts), EMB_BATCH):
batch = batch_texts[i:i + EMB_BATCH]
enc = tok(batch, padding=True, truncation=True, max_length=512, return_tensors="pt")
out = model(**enc)
pooled = _mean_pool(out.last_hidden_state, enc["attention_mask"])
pooled = torch.nn.functional.normalize(pooled, p=2, dim=1)
vecs.append(pooled.cpu().numpy().astype(np.float32))
return np.vstack(vecs) if vecs else np.zeros((0, 384), dtype=np.float32)
def topk_cosine(q: np.ndarray, mat: np.ndarray, k: int) -> List[Tuple[int, float]]:
scores = (mat @ q.reshape(-1, 1)).squeeze(1)
if scores.size == 0:
return []
k = max(1, min(k, scores.size))
idx = np.argpartition(-scores, k - 1)[:k]
idx = idx[np.argsort(-scores[idx])]
return [(int(i), float(scores[i])) for i in idx]
@dataclass
class Index:
key: str
text: str
chunks: List[str]
emb: np.ndarray
# Small LRU cache (keeps RAM bounded)
_INDEX_CACHE: "OrderedDict[str, Index]" = OrderedDict()
CACHE_MAX = 4
def get_index(text: str) -> Index:
text = safe_text(text)
k = sha_key(text)
if k in _INDEX_CACHE:
_INDEX_CACHE.move_to_end(k)
return _INDEX_CACHE[k]
chunks = split_into_chunks(text)
emb = embed_texts(chunks, is_query=False) if chunks else np.zeros((0, 384), dtype=np.float32)
idx = Index(key=k, text=text, chunks=chunks, emb=emb)
_INDEX_CACHE[k] = idx
_INDEX_CACHE.move_to_end(k)
while len(_INDEX_CACHE) > CACHE_MAX:
_INDEX_CACHE.popitem(last=False)
return idx
def retrieve(idx: Index, query: str, k: int) -> List[Tuple[float, str]]:
query = (query or "").strip()
if not query or idx.emb.shape[0] == 0:
return []
qv = embed_texts([query], is_query=True)[0]
hits = topk_cosine(qv, idx.emb, k=k)
return [(score, idx.chunks[i]) for i, score in hits]
# =========================
# Summarization (hierarchical, stable)
# =========================
def summarize_one(text: str, out_max: int, out_min: int) -> str:
sum_pipe, _, _, _, _, _, _ = get_models()
text = normalize_space(text)
if not text:
return ""
# pipeline expects token lengths; we keep conservative values
res = sum_pipe(text, max_length=out_max, min_length=out_min, do_sample=False)
if isinstance(res, list) and res:
return (res[0].get("summary_text") or "").strip()
return ""
def smart_summary(text: str) -> str:
text = safe_text(text)
if not text:
return "Нет текста."
chunks = split_into_chunks(text)
if not chunks:
return "Нет текста."
# For short text: direct
if len(text) < 2500 and len(chunks) <= 2:
s = summarize_one(text, out_max=220, out_min=80)
return s if s else summarize_one(text, out_max=160, out_min=50)
# For long text: summarize chunks then summarize the combined summaries
parts = chunks[:8]
partial = []
for p in parts:
sp = summarize_one(p, out_max=140, out_min=40)
if sp:
partial.append(sp)
combined = " ".join(partial).strip()
if not combined:
combined = " ".join(parts)[:4000]
final = summarize_one(combined, out_max=240, out_min=90)
if not final:
final = summarize_one(combined, out_max=180, out_min=60)
return final if final else "Не удалось получить пересказ."
def make_title(text: str, summary: str) -> str:
# heuristic title: first 8–12 words of summary, else first sentence of text
src = summary.strip() if summary.strip() else normalize_space(text[:500])
words = [w for w in re.split(r"\s+", src) if w]
title = " ".join(words[:12]).strip(" .,:;—-")
return title if title else "Краткий пересказ"
# =========================
# QA Chat (retrieval + pipeline QA)
# =========================
def qa_answer(question: str, context: str) -> Tuple[str, str, float]:
_, _, qa_pipe, _, _, _, _ = get_models()
question = (question or "").strip()
context = (context or "").strip()
if not question or not context:
return "", "", 0.0
context = context[:CTX_MAX_CHARS]
out = qa_pipe(question=question, context=context)
ans = (out.get("answer") or "").strip()
score = float(out.get("score") or 0.0)
start = int(out.get("start") or 0)
end = int(out.get("end") or 0)
# evidence snippet
left = max(0, start - 140)
right = min(len(context), end + 220)
snippet = context[left:right].strip()
if left > 0:
snippet = "…" + snippet
if right < len(context):
snippet = snippet + "…"
return ans, snippet, score
# =========================
# Quiz (heuristic questions; answers via retrieval+QA)
# =========================
def _sentences(text: str) -> List[str]:
# very simple sentence splitter
text = normalize_space(text)
if not text:
return []
parts = re.split(r"(?<=[\.\!\?…])\s+", text)
out = []
for p in parts:
p = p.strip()
if 40 <= len(p) <= 240:
out.append(p)
return out
def _keywords(text: str) -> Dict[str, int]:
words = re.findall(r"[А-Яа-яЁёA-Za-z\-]{3,}", text.lower())
freq: Dict[str, int] = {}
for w in words:
if w in RU_STOP:
continue
freq[w] = freq.get(w, 0) + 1
return freq
def generate_quiz_questions(text: str, n: int) -> List[str]:
n = int(max(1, min(n, 12)))
sents = _sentences(text)
if not sents:
return []
freq = _keywords(text)
if not freq:
# fallback: use first sentences
sents = sents[:n]
return [f"О чем говорится в утверждении: «{s}»?" for s in sents]
scored = []
for s in sents:
ws = re.findall(r"[А-Яа-яЁёA-Za-z\-]{3,}", s.lower())
score = sum(freq.get(w, 0) for w in ws if w not in RU_STOP)
scored.append((score, s))
scored.sort(key=lambda x: x[0], reverse=True)
questions = []
for _, s in scored[: min(len(scored), n * 2)]:
ws = [w for w in re.findall(r"[А-Яа-яЁёA-Za-z\-]{3,}", s.lower()) if w not in RU_STOP]
if not ws:
continue
# choose "keyword" to blank
kw = max(ws, key=lambda w: freq.get(w, 0))
# blank first occurrence (case-insensitive)
blanked = re.sub(re.escape(kw), "____", s, count=1, flags=re.IGNORECASE)
q = f"Заполните пропуск: {blanked}"
questions.append(q)
if len(questions) >= n:
break
return questions[:n]
# =========================
# Gradio actions
# =========================
def on_load_models() -> str:
try:
sum_pipe, sum_id, qa_pipe, qa_id, emb_tok, emb_model, emb_id = get_models()
return (
"Модели загружены.\n"
f"- Summarization: {sum_id}\n"
f"- QA: {qa_id}\n"
f"- Embeddings: {emb_id}\n"
)
except Exception as e:
return f"Ошибка загрузки моделей: {e}"
def on_summary(text: str) -> str:
try:
text = safe_text(text)
if not text:
return "Нет текста."
s = smart_summary(text)
title = make_title(text, s)
return f"### Заголовок\n{title}\n\n### Пересказ\n{s}"
except Exception as e:
return f"Ошибка: {e}"
def on_search(text: str, query: str, k: int) -> str:
try:
text = safe_text(text)
query = (query or "").strip()
if not text:
return "Нет текста."
if not query:
return "Введите запрос."
idx = get_index(text)
hits = retrieve(idx, query, int(max(1, min(k, 10))))
if not hits:
return "Ничего не найдено."
out = ["### Результаты"]
for i, (score, chunk) in enumerate(hits, 1):
out.append(f"**{i}. score={score:.3f}**\n{chunk}\n")
return "\n".join(out).strip()
except Exception as e:
return f"Ошибка: {e}"
def on_quiz(text: str, n: int) -> str:
try:
text = safe_text(text)
if not text:
return "Нет текста."
idx = get_index(text)
questions = generate_quiz_questions(text, int(n))
if not questions:
return "Не удалось сгенерировать вопросы."
lines = ["### Вопросы и ответы (с доказательством)"]
for i, q in enumerate(questions, 1):
# For cloze question, try to answer via QA using retrieved context.
# We convert cloze to a QA-style question by removing "Заполните пропуск:"
qa_q = re.sub(r"^Заполните пропуск:\s*", "", q).strip()
hits = retrieve(idx, qa_q, k=5)
ctx = "\n\n".join([c for _, c in hits]) if hits else text[:CTX_MAX_CHARS]
ctx = ctx[:CTX_MAX_CHARS]
ans, ev, score = qa_answer(qa_q, ctx)
if not ans or score < 0.08:
ans = "В тексте это не указано (или требуется переформулировать вопрос)."
lines.append(f"**{i}. {q}**")
lines.append(f"- Ответ: {ans}")
lines.append(f"- Фрагмент: {ev}")
lines.append("")
return "\n".join(lines).strip()
except Exception as e:
return f"Ошибка: {e}"
def on_chat(text: str, history: List[Tuple[str, str]], user_q: str):
try:
text = safe_text(text)
user_q = (user_q or "").strip()
history = history or []
if not text:
history.append((user_q, "Нет текста. Вставьте текст слева."))
return history, ""
if not user_q:
return history, ""
idx = get_index(text)
hits = retrieve(idx, user_q, k=5)
ctx = "\n\n".join([c for _, c in hits]) if hits else text[:CTX_MAX_CHARS]
ctx = ctx[:CTX_MAX_CHARS]
ans, ev, score = qa_answer(user_q, ctx)
if not ans or score < 0.08:
reply = "Ответ по тексту не найден. Попробуйте переформулировать вопрос или уточнить термин."
else:
reply = f"Ответ: {ans}\n\nДоказательство:\n{ev}"
history.append((user_q, reply))
return history, ""
except Exception as e:
history = history or []
history.append((user_q, f"Ошибка: {e}"))
return history, ""
# =========================
# UI (minimal)
# =========================
with gr.Blocks(title="RU Text Assistant (CPU, 3 Transformers)") as demo:
with gr.Row():
with gr.Column(scale=2):
text_in = gr.Textbox(label="Текст (русский)", lines=16, placeholder="Вставьте текст для анализа…")
load_btn = gr.Button("Загрузить модели", variant="secondary")
model_status = gr.Textbox(label="Статус", lines=5, interactive=False)
with gr.Column(scale=3):
with gr.Tabs():
with gr.Tab("Пересказ"):
sum_btn = gr.Button("Сделать пересказ", variant="primary")
sum_out = gr.Markdown()
with gr.Tab("Поиск"):
query_in = gr.Textbox(label="Запрос", placeholder="Например: стандартизация, вариабельность, вывод…")
k_in = gr.Slider(1, 10, value=TOPK_DEFAULT, step=1, label="Top-K")
search_btn = gr.Button("Найти фрагменты", variant="primary")
search_out = gr.Markdown()
with gr.Tab("Вопросы"):
n_in = gr.Slider(1, 12, value=6, step=1, label="Количество вопросов")
quiz_btn = gr.Button("Сгенерировать и проверить", variant="primary")
quiz_out = gr.Markdown()
with gr.Tab("Чат по тексту"):
chat = gr.Chatbot(height=420)
user_q = gr.Textbox(label="Вопрос", lines=1, placeholder="Задайте вопрос по тексту…")
send_btn = gr.Button("Отправить", variant="primary")
load_btn.click(on_load_models, outputs=[model_status])
sum_btn.click(on_summary, inputs=[text_in], outputs=[sum_out])
search_btn.click(on_search, inputs=[text_in, query_in, k_in], outputs=[search_out])
quiz_btn.click(on_quiz, inputs=[text_in, n_in], outputs=[quiz_out])
send_btn.click(on_chat, inputs=[text_in, chat, user_q], outputs=[chat, user_q])
user_q.submit(on_chat, inputs=[text_in, chat, user_q], outputs=[chat, user_q])
if __name__ == "__main__":
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860, show_error=True)