neural-thinker's picture
feat: clean HuggingFace deployment with essential files only
824bf31

🧠 Cidadão.AI Memory System

πŸ“‹ Overview

The Memory System implements a sophisticated multi-layer memory architecture inspired by human cognitive memory models. This system enables agents to maintain context, learn from experiences, and build knowledge over time, crucial for effective transparency analysis and investigation continuity.

πŸ—οΈ Architecture

src/memory/
β”œβ”€β”€ base.py             # Abstract memory interfaces
β”œβ”€β”€ episodic.py         # Event-specific memory storage
β”œβ”€β”€ semantic.py         # General knowledge and patterns
β”œβ”€β”€ conversational.py   # Dialog context management
└── __init__.py        # Memory system initialization

🧩 Memory Architecture

Multi-Layer Memory Model

The system implements three distinct memory layers based on cognitive science research:

# Memory hierarchy (cognitive psychology inspired)
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Conversational      β”‚ ← Short-term, session-based
β”‚ Memory              β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Episodic Memory     β”‚ ← Medium-term, event-based
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Semantic Memory     β”‚ ← Long-term, knowledge-based
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

1. Base Memory Framework (base.py)

Abstract Memory Interface

from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
from datetime import datetime
from enum import Enum

class MemoryType(Enum):
    """Memory classification types"""
    EPISODIC = "episodic"           # Specific events and experiences
    SEMANTIC = "semantic"           # General knowledge and facts
    PROCEDURAL = "procedural"       # Skills and procedures
    WORKING = "working"             # Temporary, active information

class MemoryImportance(Enum):
    """Memory importance levels for retention management"""
    TRIVIAL = 1      # Can be discarded easily
    LOW = 2          # Moderate retention
    MEDIUM = 3       # Standard retention
    HIGH = 4         # Long retention
    CRITICAL = 5     # Permanent retention

class BaseMemory(ABC):
    """
    Abstract base class for all memory implementations
    
    Core Principles:
    - Importance-based retention
    - Temporal decay with reinforcement
    - Associative retrieval
    - Context-aware storage
    - Efficient search and indexing
    """
    
    def __init__(self, memory_type: MemoryType, max_size: int = 10000):
        self.memory_type = memory_type
        self.max_size = max_size
        self.memories: Dict[str, MemoryEntry] = {}
        self.index = {}  # For fast retrieval
        
    @abstractmethod
    async def store(
        self, 
        key: str, 
        content: Any, 
        importance: MemoryImportance = MemoryImportance.MEDIUM,
        metadata: Dict[str, Any] = None
    ) -> bool:
        """Store memory with importance weighting"""
        pass
        
    @abstractmethod
    async def retrieve(
        self, 
        key: str = None,
        query: str = None,
        similarity_threshold: float = 0.8,
        max_results: int = 10
    ) -> List[MemoryEntry]:
        """Retrieve memories by key or semantic query"""
        pass
        
    @abstractmethod
    async def forget(self, key: str) -> bool:
        """Explicitly remove memory"""
        pass
        
    @abstractmethod
    async def consolidate(self) -> Dict[str, int]:
        """Consolidate memories (move from short to long-term)"""
        pass

class MemoryEntry(BaseModel):
    """Individual memory entry with metadata"""
    
    id: str = Field(..., description="Unique memory identifier")
    content: Any = Field(..., description="Memory content")
    memory_type: MemoryType = Field(..., description="Type of memory")
    importance: MemoryImportance = Field(..., description="Importance level")
    
    # Temporal information
    created_at: datetime = Field(default_factory=datetime.utcnow)
    last_accessed: datetime = Field(default_factory=datetime.utcnow)
    access_count: int = Field(default=0, description="Number of times accessed")
    
    # Context and associations
    context: Dict[str, Any] = Field(default_factory=dict, description="Contextual metadata")
    associations: List[str] = Field(default_factory=list, description="Associated memory IDs")
    tags: List[str] = Field(default_factory=list, description="Searchable tags")
    
    # Decay and reinforcement
    decay_rate: float = Field(default=0.1, description="Memory decay rate (0-1)")
    reinforcement_count: int = Field(default=0, description="Times reinforced")
    strength: float = Field(default=1.0, description="Memory strength (0-1)")
    
    def calculate_current_strength(self) -> float:
        """Calculate current memory strength with decay"""
        time_elapsed = (datetime.utcnow() - self.created_at).total_seconds()
        decay_factor = math.exp(-self.decay_rate * time_elapsed / 86400)  # Per day
        reinforcement_boost = min(0.5, self.reinforcement_count * 0.1)
        
        return min(1.0, (self.strength * decay_factor) + reinforcement_boost)
    
    def reinforce(self) -> None:
        """Reinforce memory (strengthen and reset decay)"""
        self.reinforcement_count += 1
        self.last_accessed = datetime.utcnow()
        self.access_count += 1
        self.strength = min(1.0, self.strength + 0.1)

2. Episodic Memory (episodic.py)

Event-Based Memory Storage

class EpisodicMemory(BaseMemory):
    """
    Episodic memory for specific events and experiences
    
    Use Cases:
    - Investigation results and findings
    - Agent interactions and decisions
    - User queries and responses
    - System events and anomalies
    - Analysis outcomes and insights
    
    Features:
    - Temporal ordering and retrieval
    - Context-rich storage
    - Event clustering and patterns
    - Causal relationship tracking
    """
    
    def __init__(self, max_size: int = 5000):
        super().__init__(MemoryType.EPISODIC, max_size)
        self.temporal_index = {}  # Time-based indexing
        self.context_index = {}   # Context-based indexing
        self.event_chains = {}    # Causal event sequences
    
    async def store_investigation_result(
        self,
        investigation_id: str,
        results: Dict[str, Any],
        context: Dict[str, Any] = None
    ) -> bool:
        """Store investigation results as episodic memory"""
        
        memory_entry = MemoryEntry(
            id=f"investigation_{investigation_id}",
            content={
                "investigation_id": investigation_id,
                "results": results,
                "anomalies_found": results.get("anomalies_found", 0),
                "confidence_score": results.get("confidence_score", 0.0),
                "processing_time": results.get("processing_time_ms", 0)
            },
            memory_type=MemoryType.EPISODIC,
            importance=self._calculate_investigation_importance(results),
            context=context or {},
            tags=self._extract_investigation_tags(results)
        )
        
        # Store in main memory
        self.memories[memory_entry.id] = memory_entry
        
        # Update temporal index
        timestamp = memory_entry.created_at.isoformat()
        if timestamp not in self.temporal_index:
            self.temporal_index[timestamp] = []
        self.temporal_index[timestamp].append(memory_entry.id)
        
        # Update context index
        for key, value in memory_entry.context.items():
            context_key = f"{key}:{value}"
            if context_key not in self.context_index:
                self.context_index[context_key] = []
            self.context_index[context_key].append(memory_entry.id)
        
        return True
    
    async def store_agent_interaction(
        self,
        agent_name: str,
        action: str,
        input_data: Dict[str, Any],
        output_data: Dict[str, Any],
        success: bool
    ) -> bool:
        """Store agent interaction as episodic memory"""
        
        memory_entry = MemoryEntry(
            id=f"agent_{agent_name}_{datetime.utcnow().isoformat()}",
            content={
                "agent_name": agent_name,
                "action": action,
                "input_summary": self._summarize_data(input_data),
                "output_summary": self._summarize_data(output_data),
                "success": success,
                "execution_context": self._extract_execution_context()
            },
            memory_type=MemoryType.EPISODIC,
            importance=MemoryImportance.MEDIUM if success else MemoryImportance.HIGH,
            context={"agent": agent_name, "action": action},
            tags=[agent_name, action, "success" if success else "failure"]
        )
        
        await self.store(memory_entry.id, memory_entry.content, memory_entry.importance, memory_entry.context)
        return True
    
    async def retrieve_investigation_history(
        self,
        investigation_id: str = None,
        organization: str = None,
        time_range: Dict[str, datetime] = None,
        max_results: int = 50
    ) -> List[MemoryEntry]:
        """Retrieve investigation history with filtering"""
        
        relevant_memories = []
        
        for memory_id, memory in self.memories.items():
            # Filter by investigation ID
            if investigation_id and investigation_id not in memory.content.get("investigation_id", ""):
                continue
                
            # Filter by organization
            if organization and organization not in memory.context.get("organization", ""):
                continue
                
            # Filter by time range
            if time_range:
                if "start" in time_range and memory.created_at < time_range["start"]:
                    continue
                if "end" in time_range and memory.created_at > time_range["end"]:
                    continue
            
            relevant_memories.append(memory)
        
        # Sort by creation time (most recent first)
        relevant_memories.sort(key=lambda m: m.created_at, reverse=True)
        
        return relevant_memories[:max_results]
    
    async def detect_investigation_patterns(self) -> Dict[str, Any]:
        """Detect patterns in investigation history"""
        
        patterns = {
            "common_anomaly_types": {},
            "organization_patterns": {},
            "temporal_patterns": {},
            "success_patterns": {}
        }
        
        for memory in self.memories.values():
            if "investigation_" in memory.id:
                content = memory.content
                
                # Anomaly type patterns
                anomaly_types = content.get("results", {}).get("anomaly_types", [])
                for anomaly_type in anomaly_types:
                    patterns["common_anomaly_types"][anomaly_type] = patterns["common_anomaly_types"].get(anomaly_type, 0) + 1
                
                # Organization patterns
                org = memory.context.get("organization", "unknown")
                patterns["organization_patterns"][org] = patterns["organization_patterns"].get(org, 0) + 1
                
                # Temporal patterns (by hour of day)
                hour = memory.created_at.hour
                patterns["temporal_patterns"][hour] = patterns["temporal_patterns"].get(hour, 0) + 1
                
                # Success patterns
                confidence = content.get("confidence_score", 0.0)
                if confidence > 0.8:
                    patterns["success_patterns"]["high_confidence"] = patterns["success_patterns"].get("high_confidence", 0) + 1
                elif confidence > 0.6:
                    patterns["success_patterns"]["medium_confidence"] = patterns["success_patterns"].get("medium_confidence", 0) + 1
                else:
                    patterns["success_patterns"]["low_confidence"] = patterns["success_patterns"].get("low_confidence", 0) + 1
        
        return patterns

3. Semantic Memory (semantic.py)

Knowledge and Pattern Storage

class SemanticMemory(BaseMemory):
    """
    Semantic memory for general knowledge and learned patterns
    
    Use Cases:
    - Government organization profiles
    - Vendor behavior patterns
    - Legal framework knowledge
    - Statistical benchmarks
    - Domain expertise
    
    Features:
    - Vector-based semantic search
    - Knowledge graph relationships
    - Pattern abstraction
    - Automated knowledge extraction
    """
    
    def __init__(self, max_size: int = 20000):
        super().__init__(MemoryType.SEMANTIC, max_size)
        self.vector_store = None  # ChromaDB or FAISS
        self.knowledge_graph = {}  # Entity relationships
        self.concept_hierarchy = {}  # Taxonomic organization
        
    async def store_organization_profile(
        self,
        organization_code: str,
        profile_data: Dict[str, Any]
    ) -> bool:
        """Store government organization profile"""
        
        memory_entry = MemoryEntry(
            id=f"org_profile_{organization_code}",
            content={
                "organization_code": organization_code,
                "name": profile_data.get("name", ""),
                "type": profile_data.get("type", ""),
                "budget_range": profile_data.get("budget_range", ""),
                "typical_contracts": profile_data.get("typical_contracts", []),
                "spending_patterns": profile_data.get("spending_patterns", {}),
                "risk_profile": profile_data.get("risk_profile", "medium"),
                "compliance_history": profile_data.get("compliance_history", [])
            },
            memory_type=MemoryType.SEMANTIC,
            importance=MemoryImportance.HIGH,
            context={"type": "organization_profile", "code": organization_code},
            tags=["organization", organization_code, profile_data.get("type", "")]
        )
        
        # Store in main memory
        self.memories[memory_entry.id] = memory_entry
        
        # Update knowledge graph
        await self._update_knowledge_graph(memory_entry)
        
        # Store vector representation for semantic search
        if self.vector_store:
            await self._store_vector_representation(memory_entry)
        
        return True
    
    async def store_pattern_knowledge(
        self,
        pattern_type: str,
        pattern_data: Dict[str, Any],
        evidence: List[str] = None
    ) -> bool:
        """Store learned patterns and knowledge"""
        
        memory_entry = MemoryEntry(
            id=f"pattern_{pattern_type}_{datetime.utcnow().timestamp()}",
            content={
                "pattern_type": pattern_type,
                "description": pattern_data.get("description", ""),
                "conditions": pattern_data.get("conditions", []),
                "indicators": pattern_data.get("indicators", []),
                "confidence": pattern_data.get("confidence", 0.0),
                "frequency": pattern_data.get("frequency", 0),
                "evidence": evidence or [],
                "applications": pattern_data.get("applications", [])
            },
            memory_type=MemoryType.SEMANTIC,
            importance=MemoryImportance.HIGH,
            context={"type": "pattern", "pattern_type": pattern_type},
            tags=["pattern", pattern_type] + pattern_data.get("tags", [])
        )
        
        await self.store(memory_entry.id, memory_entry.content, memory_entry.importance, memory_entry.context)
        return True
    
    async def query_similar_patterns(
        self,
        query_pattern: Dict[str, Any],
        similarity_threshold: float = 0.8,
        max_results: int = 10
    ) -> List[MemoryEntry]:
        """Find patterns similar to the query pattern"""
        
        if not self.vector_store:
            # Fallback to keyword-based search
            return await self._keyword_based_pattern_search(query_pattern, max_results)
        
        # Vector-based semantic search
        query_vector = await self._generate_pattern_embedding(query_pattern)
        similar_memories = await self.vector_store.similarity_search(
            query_vector,
            threshold=similarity_threshold,
            max_results=max_results
        )
        
        return similar_memories
    
    async def extract_knowledge_from_investigations(
        self,
        investigation_results: List[Dict[str, Any]]
    ) -> Dict[str, Any]:
        """Extract semantic knowledge from investigation results"""
        
        extracted_knowledge = {
            "organization_insights": {},
            "vendor_patterns": {},
            "anomaly_patterns": {},
            "seasonal_patterns": {},
            "compliance_insights": {}
        }
        
        for result in investigation_results:
            # Extract organization insights
            org_code = result.get("organization_code")
            if org_code:
                if org_code not in extracted_knowledge["organization_insights"]:
                    extracted_knowledge["organization_insights"][org_code] = {
                        "anomaly_frequency": 0,
                        "avg_confidence": 0.0,
                        "common_issues": []
                    }
                
                org_insight = extracted_knowledge["organization_insights"][org_code]
                org_insight["anomaly_frequency"] += result.get("anomalies_found", 0)
                org_insight["avg_confidence"] += result.get("confidence_score", 0.0)
            
            # Extract vendor patterns
            vendors = result.get("vendors", [])
            for vendor in vendors:
                vendor_id = vendor.get("id")
                if vendor_id and vendor.get("anomaly_score", 0) > 0.7:
                    if vendor_id not in extracted_knowledge["vendor_patterns"]:
                        extracted_knowledge["vendor_patterns"][vendor_id] = {
                            "risk_score": 0.0,
                            "issue_types": [],
                            "frequency": 0
                        }
                    
                    pattern = extracted_knowledge["vendor_patterns"][vendor_id]
                    pattern["risk_score"] = max(pattern["risk_score"], vendor.get("anomaly_score", 0))
                    pattern["frequency"] += 1
        
        # Store extracted knowledge
        for category, knowledge in extracted_knowledge.items():
            if knowledge:  # Only store non-empty knowledge
                await self.store_pattern_knowledge(
                    pattern_type=category,
                    pattern_data={"description": f"Extracted {category}", "data": knowledge}
                )
        
        return extracted_knowledge

4. Conversational Memory (conversational.py)

Dialog Context Management

class ConversationalMemory(BaseMemory):
    """
    Conversational memory for dialog context and user interactions
    
    Use Cases:
    - User query context and history
    - Multi-turn conversation tracking
    - User preferences and patterns
    - Session state management
    - Personalization data
    
    Features:
    - Session-based organization
    - Context window management
    - Intent tracking
    - Preference learning
    """
    
    def __init__(self, max_size: int = 2000, context_window: int = 20):
        super().__init__(MemoryType.WORKING, max_size)
        self.context_window = context_window
        self.active_sessions = {}
        self.user_profiles = {}
        
    async def store_user_message(
        self,
        user_id: str,
        session_id: str,
        message: str,
        intent: str = None,
        entities: Dict[str, Any] = None
    ) -> bool:
        """Store user message with context"""
        
        message_entry = MemoryEntry(
            id=f"user_msg_{session_id}_{datetime.utcnow().timestamp()}",
            content={
                "user_id": user_id,
                "session_id": session_id,
                "message": message,
                "intent": intent,
                "entities": entities or {},
                "message_type": "user"
            },
            memory_type=MemoryType.WORKING,
            importance=MemoryImportance.MEDIUM,
            context={"user_id": user_id, "session_id": session_id},
            tags=["user_message", intent or "unknown_intent"]
        )
        
        # Store message
        await self.store(message_entry.id, message_entry.content, message_entry.importance, message_entry.context)
        
        # Update session tracking
        await self._update_session_context(session_id, message_entry)
        
        # Update user profile
        await self._update_user_profile(user_id, message_entry)
        
        return True
    
    async def store_agent_response(
        self,
        session_id: str,
        agent_name: str,
        response: str,
        confidence: float = 1.0,
        metadata: Dict[str, Any] = None
    ) -> bool:
        """Store agent response with context"""
        
        response_entry = MemoryEntry(
            id=f"agent_resp_{session_id}_{datetime.utcnow().timestamp()}",
            content={
                "session_id": session_id,
                "agent_name": agent_name,
                "response": response,
                "confidence": confidence,
                "metadata": metadata or {},
                "message_type": "agent"
            },
            memory_type=MemoryType.WORKING,
            importance=MemoryImportance.MEDIUM,
            context={"session_id": session_id, "agent": agent_name},
            tags=["agent_response", agent_name]
        )
        
        await self.store(response_entry.id, response_entry.content, response_entry.importance, response_entry.context)
        await self._update_session_context(session_id, response_entry)
        
        return True
    
    async def get_conversation_context(
        self,
        session_id: str,
        max_messages: int = None
    ) -> List[MemoryEntry]:
        """Get conversation context for a session"""
        
        max_messages = max_messages or self.context_window
        
        session_memories = []
        for memory in self.memories.values():
            if memory.context.get("session_id") == session_id:
                session_memories.append(memory)
        
        # Sort by creation time and limit to context window
        session_memories.sort(key=lambda m: m.created_at)
        return session_memories[-max_messages:]
    
    async def learn_user_preferences(self, user_id: str) -> Dict[str, Any]:
        """Learn user preferences from conversation history"""
        
        user_memories = [
            memory for memory in self.memories.values()
            if memory.context.get("user_id") == user_id
        ]
        
        preferences = {
            "preferred_analysis_types": {},
            "common_organizations": {},
            "typical_queries": [],
            "response_preferences": {
                "detail_level": "medium",
                "format_preference": "natural_language"
            }
        }
        
        for memory in user_memories:
            content = memory.content
            
            # Learn from intents
            if content.get("intent"):
                intent = content["intent"]
                preferences["preferred_analysis_types"][intent] = preferences["preferred_analysis_types"].get(intent, 0) + 1
            
            # Learn from entities
            entities = content.get("entities", {})
            if "organization" in entities:
                org = entities["organization"]
                preferences["common_organizations"][org] = preferences["common_organizations"].get(org, 0) + 1
        
        # Update user profile
        self.user_profiles[user_id] = preferences
        
        return preferences

πŸ”„ Memory Consolidation & Management

Automated Memory Management

class MemoryManager:
    """
    Central memory management system
    
    Features:
    - Automatic memory consolidation
    - Importance-based retention
    - Cross-memory association
    - Garbage collection
    - Performance optimization
    """
    
    def __init__(self):
        self.episodic_memory = EpisodicMemory()
        self.semantic_memory = SemanticMemory()
        self.conversational_memory = ConversationalMemory()
        
    async def consolidate_memories(self) -> Dict[str, int]:
        """Consolidate memories across layers"""
        
        consolidation_stats = {
            "episodic_to_semantic": 0,
            "conversational_to_episodic": 0,
            "forgotten_memories": 0
        }
        
        # Promote important episodic memories to semantic
        important_episodes = [
            memory for memory in self.episodic_memory.memories.values()
            if memory.importance.value >= MemoryImportance.HIGH.value
            and memory.reinforcement_count > 3
        ]
        
        for episode in important_episodes:
            # Extract semantic patterns
            semantic_knowledge = await self._extract_semantic_knowledge(episode)
            if semantic_knowledge:
                await self.semantic_memory.store_pattern_knowledge(
                    pattern_type="learned_from_episode",
                    pattern_data=semantic_knowledge,
                    evidence=[episode.id]
                )
                consolidation_stats["episodic_to_semantic"] += 1
        
        # Promote important conversations to episodic
        important_conversations = [
            memory for memory in self.conversational_memory.memories.values()
            if memory.importance.value >= MemoryImportance.HIGH.value
        ]
        
        for conversation in important_conversations:
            await self.episodic_memory.store_agent_interaction(
                agent_name="conversational_agent",
                action="important_conversation",
                input_data={"conversation_id": conversation.id},
                output_data=conversation.content,
                success=True
            )
            consolidation_stats["conversational_to_episodic"] += 1
        
        # Forget low-importance, old memories
        forgotten_count = await self._forget_old_memories()
        consolidation_stats["forgotten_memories"] = forgotten_count
        
        return consolidation_stats
    
    async def _forget_old_memories(self) -> int:
        """Remove low-importance memories based on age and strength"""
        
        forgotten_count = 0
        current_time = datetime.utcnow()
        
        for memory_layer in [self.episodic_memory, self.semantic_memory, self.conversational_memory]:
            memories_to_forget = []
            
            for memory_id, memory in memory_layer.memories.items():
                # Calculate memory strength with decay
                current_strength = memory.calculate_current_strength()
                age_days = (current_time - memory.created_at).days
                
                # Forget if strength is very low and memory is old
                if (current_strength < 0.1 and age_days > 30) or \
                   (memory.importance == MemoryImportance.TRIVIAL and age_days > 7):
                    memories_to_forget.append(memory_id)
            
            # Remove forgotten memories
            for memory_id in memories_to_forget:
                await memory_layer.forget(memory_id)
                forgotten_count += 1
        
        return forgotten_count

πŸ§ͺ Usage Examples

Basic Memory Operations

from src.memory import EpisodicMemory, SemanticMemory, ConversationalMemory

# Initialize memory systems
episodic = EpisodicMemory()
semantic = SemanticMemory()
conversational = ConversationalMemory()

# Store investigation result
investigation_result = {
    "anomalies_found": 5,
    "confidence_score": 0.92,
    "processing_time_ms": 1500
}

await episodic.store_investigation_result(
    investigation_id="inv_001",
    results=investigation_result,
    context={"organization": "20000", "year": "2024"}
)

# Store organization knowledge  
org_profile = {
    "name": "MinistΓ©rio da SaΓΊde",
    "type": "federal_ministry",
    "budget_range": "50B+",
    "risk_profile": "medium"
}

await semantic.store_organization_profile("20000", org_profile)

# Store conversation
await conversational.store_user_message(
    user_id="user123",
    session_id="session_001", 
    message="Analyze health ministry contracts from 2024",
    intent="analyze_contracts",
    entities={"organization": "20000", "year": "2024"}
)

Advanced Memory Retrieval

# Retrieve investigation history
investigation_history = await episodic.retrieve_investigation_history(
    organization="20000",
    time_range={
        "start": datetime(2024, 1, 1),
        "end": datetime(2024, 12, 31)
    },  
    max_results=20
)

# Find similar patterns
similar_patterns = await semantic.query_similar_patterns(
    query_pattern={
        "pattern_type": "vendor_concentration",
        "conditions": ["high_market_share", "few_competitors"],
        "confidence": 0.8
    },
    similarity_threshold=0.7
)

# Get conversation context
context = await conversational.get_conversation_context(
    session_id="session_001",
    max_messages=10
)

Memory Consolidation

from src.memory import MemoryManager

# Initialize memory manager
memory_manager = MemoryManager()

# Perform memory consolidation  
consolidation_stats = await memory_manager.consolidate_memories()

print(f"Promoted {consolidation_stats['episodic_to_semantic']} episodes to semantic memory")
print(f"Forgot {consolidation_stats['forgotten_memories']} old memories")

This sophisticated memory system enables the CidadΓ£o.AI agents to learn from experience, maintain context, and build knowledge over time, crucial for effective long-term transparency analysis and investigation continuity.